
S~LEVEL

AFAL-TR-77-245 1

DAIS PROCESSOR INSTRUCTION SET
EXTENSION STUDY

8 WESTINGHOUSE ELECTRIC CORPORA TION
SYSTEMS DEVELOPMENT DIVISION
BALTIMORE, MARYLAND 21203

DDC

L ,__ AUGUST 1977 JUL 12 1978

TECHNICAL REPORT AFAL-TR-77-245 E
Final Report for Period 3 May 1976 - 3 August 1977

Approved for public release; distribution unlimited,

AIR FORCE AVIO ICS LABORATORY
AIR FORCE WRIGH AERONAUTICAL LABORATORIES
AIR FORCE SYSTEM COMMAND
WRIGHT-PAlTfTrERSO AIR FORCE BASE, OHIO 45433

7807 0065

I T

AM Ti

D[SLAI I N

THIS DOCUMNT IS BEST

QUALI'Y AVAILABLE. TIM COPY

FRNISHIED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

GEcT 7HICT DO NOT

~K7~FRDUC3 LGIB LY.

REPRODUCED FROM
BEST AVAILABLE COPY

NOTICE

When Government drawings, specifications, or other data are used for any pur-
pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any manner licen-
sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (OX) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be avail-
able to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DONALD 160N, IfroJect Engineer MARK MICHAEL, Technical Manager

Fe)R THE COMmANDER

RICIVYRD W. SMITH, Lt Col, USAF
Acting Chief
System Avionics Division

Copies of this report should not be returned unless return is requir~d by so-
curity considerations, contractual obligatlonx, or notice on a peclific do•guwnt.

AIR FORCcE/I7o0/31 MV 1970- 50

UNCLASSIFIED ____

S9CURIT XLASSIFICAYION OF THIS PAGE (IAhon Data Entered)

?. EOT OUETTINPG READ IN'STRUCTIONS
I.,2 REOVR ACCESSTATIN NPAGE BEFORE COMPLETING FORM

4.TI.. f nd Subtitle) f

DAIS PROCESSOR INSTRUCTION SET EXTENSION STLDMy76Y# Ag7

L. Gra y /IMi11e r et al. 'C F373615-76-C-1292j.)

9 PERFORMING ORGANIZATION NAME AND ADDRESS _J0. PROGRAM ELEMENT,' PROJECT, TASK
Westinghouse Electric CorporationARAAWKUNTUME-._
Systems Development Division 04-17 RA OK NTNUS~Baltimore, Md. 21203 Z101 V ~ 30-7 ~ ~

ii. CON4TROLLING OFFICE NAME AND ADDRESS

AFAL /AA/ AAT tWX7
14P AFB, Ohio 454~33

14. MONITORING AGEN4CY NAME 6 ADORESSCNf different from Controlling Office) IS. SECURITY .L tho Fl. ;rfo)

16. DISTRIBUTION STA71EVENT (of this Report)

Approved for public release; distribution unlimited.D D C

17. DISTRIBUTION STATEM.ENT toiletse abstract entered Jet Block 20, If dfl fermi from Report)

IS- SUPPLEMENTARY NOTES

19. K EY WORDS tContintue pn revrse, side it nlecesardy and identify by block number)

DAIS Processor AN/AYK-15 Computer
Computer Family Software Study
Upwards Compatible Low Level Machine

20 ABSTRACT (Continue on revrqrs aide If neceshary and fdentifys by block number)

"4The purpose of the<ýki'S Processor Instruction Set Extension Study Fin~allýZert
is to document the results of a study program of the AYK-13 digital computer.
The first phase of the study developed instruction set changes for the AN!
AYK -15 0 ter to increase its software efficiency. The second phase~of theA

studyrovaluavted the impacPt o thd'se.-Ehifges' o'n the AYK-15' comp~u-t6F..The final
phaseP7ýfeUs_09defined a block level design of a low cost avionics computer
compatible with the roc~ommended irnstruction set.

ODD, 1473 EDITION Of I -4OV095 IS OSOLe-re UCASF
SE~RIY' CAISVI~~go 07YNI PAGE (1414en Data Entered)

Dy lON for

...

ly .,... o..........................,, ...o , ,

DISThIBUTION/AYAILAIILITM iOW

list. AVAIL. ad/or VEGIAL

SPREFACE

This report has documented the results of the DAIS study contract. The

results of three areas of work will be detailed throughout the following

pages.

First, the results and ensuing recommendations of an instruction set

analysis are presented in Section 2. Paramount in this work is the

selection of base addressing as the most effective method of achieving

greater software efficiency. Indeed, base addressing yields a 30 percent

improvement in software efficiency when compared with the current AYK-15

instruction set. Also, new data formats for floating-point number representa-

tion were analyzed along with integer and fractional representations for fixed-

point numbers.

The conclusions of this software analysis were are presented as a re-

commended instruction matrix in Table 2. This instruction set is then

"subsetted" for the Low Level Machine and presented in Table 3.

Second, the hardware and firmware impact of implementing the instruc-

ion set of Table 2 on the current AYK-15 computer is analyzed in section 3.

The cost impact of the proposed changes are summarized iii Table 7.

Finally, the instruction set of Table 3 is used to investigate the design

of a low-level number of the AYK-15 based computer family. Whenever

appropriate, performance is sacrified to achieve a minimum parts count

for the Low-Level Machine. During this investigation, floating-point in-

structions are also incorporated into the LLM1 design. The results of the

design are fab,,lated and presented in terms of performance (instruction

speeds), parts and power.

"07

This study shows the desirability and practicality of generating a

family of military computers based upon the present AYK-15. With the
modifications outlined in this report, the AYK-15 and the LLM provide a
sound basis for developing a family of airborne digital computers.

ii;

TABLE OF CONTENTS

SECTION PAGE

I PURPOSE I

1. 1 Instruction Set Choice I

1. 2 Hardware Modifications to Present Dais Computer 2

1. 3 Design of Low Level Dais Machine (LLM) 2

II L'NSTRUCTION SET DEFIN4ITION 5

2. 1 Family Concept (Upwards Compatibility) 5

2. 2 Software Efficiency Study of New Addressing Modes 5

2. 2. 1 Register Indirect 11

2. 2. 2 Base Relative 12

2. 2. 3 Immediate Short 13

2. 2.4 Jump Conditional (IC Relative) 14

2.2. 5 Jump to Subroutine (IC Relative) 14

2. 2. 6 Stack (PS-/POP) 14

2. 2. 7 Immediate Long Formats 15

2. 3 New Data Formats 16

2. 3. 1 Fixed-Point Multiply and Divide 16

2. 3. 2 Floating Point Format 18

2. 3. 3 Extended Floating-Point Arithmetic 21

2. 4 Context Switching 22

2. 4. 1 LPSW Instruction 22

2.4. 2 Interrupts 23

2. 4. 3 Priviliged Modes 23

2.4.4 Multiple Register Sets 24

2.4.5 Extended Memory Addressing 24

2.4.6 PSW Formats 25

v

SECTION PAGE

2. 4. 7 IRe-Entrant Subroutines 25

2. 5 Conclusions 30

2. 5. 1 Summary of Proposed Changes 30

2. 5. 2 Final Instruction Set 34

2. 5. 3 Subset for Low Level, Machine 34

III MODIFICATIONS TO PRESENT DAIS 37

3. 1 Micro-Code 37

3. 1. 1 Instruction Changes 37

3. 1. 2 Changes for Floating-Point Instruction Formats 41

3. 2 Hardware/Firmware Cost Summary 42

3. 3 Detailed Documentation 42

IV LOW-LEVEL MACHINE (LLM) DESIGN 133

4. 1 Scope of Design 133

4. 2 Application Base of LLM 133

4. 3 Design Goals 134

4. 4 LLM Organization 136

4. 4. 1 Arithmetic Loop 136

4. 4. 2 Control Structure 138

4.4.3 I/0 Organization 138

4. 4. 4 Machine Operation and Timing 139

4. 4. 5 Execution Times 151

4. 5 Physical Description 151

153

vi

LIST OF ILLUSTRATIONS

FIGURE PAGE

1 SROM 32

2 RROM 32

3 S-Gates 33

4 PT5ROM 33

5 PSH Instruction 46

6 PSH Timing Diagram 47

7 POP Instruction 49

8 POP Timing Diagram 50

9 LPSW Words 52

10 LPSW Instruction 53

11 LPSW Timing Diagram 54

12 TYPE - PS (Register to Register Special) 56

13 FAR Timing Diagram 57

14 FAR Instruction 58

15 FAR Instruction 59

16 TYPE - PS (Register to Register Special) 61

17 FSR Timing Diagram 62

18 FSR Instruction 63

19 FSR Instruction 64

20 TYPE - PS (Register to Register Special) 66

21 FMR Timing Diagram 67

22 FMR Instruction 68

23 FMR Instruction 69

24 TYPE - PS (Register to Register Special) 7.

2, FDR Timing Diagram 72

vii

FIGURE PAGE

26 FDR Instruction 73

27 FDR Instruction 74

28 TYPE - PS (Register to Register Special) 76

29 FCR Timing Diagram 77

30 FCR Instruction 78

31 TYPE - D (Direct Memory Access Instruction) 80

32 M Timing Diagram 81

33 M Instruction 82

34 M Instruction 83

35 TYPE - R (Register to Register Instruction) 85

36 MR Timing Diagram 86

37 MR Instruction 87

38 MR Instruction 88

39 Type - I (Indirect Memory Access Instruction) 90

40 MI Timing Diagram 91

41 MI Instruction 92

42 TI Instruction 93

43 Type - D (Direct Memory Access Instruction) 95

44 D Timing Diagram 96

45 D Instruction 97

46 D Instruction 98

47 Type - R (Register to Register Instruction) 100

48 DR Timing Diagram 101

49 DR Instruction 102

50 DR Instruction 103

51 Type - I (Indirect Memory Access Instruction) 105

52 DI Timing Diagram 106

53 DI Instruction 107

54 DI Instruction 108

viii

ITCIRr PACE

55 Type - R (Rezister to Re[ister Instruction) It0

56 DABS Timing Diagram I[l

57 DABS Instruction 112

58 Type - R (Register to Register Instruction) 114

59 DNEG Timing Diagram 115

60 DNEG Instruction 116

61 Type - R (Register to Register Instruction) 118

62 SRC Timing Diagram 119

63 SRC Instruction 120

64 Type - R (Register to Register Instruction) 122

65 DSLL Timing Diagram 123

66 DSLL Instruction 124

67 Type - R (Register to Register Instruction) 126

68 DSRA Timing Diagram 127

69 DSRA Instruction 128

70 Type - R (Register to Register Instruction) 130

71 DSCR Timing Diagram 131

72 DSCR Instruction 132

73 Low-Level Machine as a Pre-processor 135

74 LLM CPU Organization 137

75 LLM i/O Organization 139

76 Instruction Fetch Flow 141

77 Instruction Fetch Timing 142

78 Fixed-P^Lnt ADD Flow 143

79 Fixed-Point ADD Timing 144

80 Shift Instruction Flow 146

81 Shift Timing 147

82 Floating - Point ADD 148

83 Multiply Flow 150

ix

LIST OF TABLES

TABLE PAGE

. Instruction Set Comparison 10

2 Recommended Instruction Mnemonics in Matrix Form 35

3 Dais Family Low-Level Machine - Recommended
Instruction Mnemonics in Matrix Form 36

4 New Instruction Evaluation 37

5 Dais Study Addressing Mode Evaluation (Sheet I of Z) 38

5 Dais Study Addressing Mode Evaluation (Sheet 2 of 2) 39
6 Floating - Point Instruction Formats 40

7 Cost Summary 43

8 Detailed Documentation 44

9 LLM Parts and Power Estimates 152

K/

SECTION I

PURPOSE

This document is a final report summarizing all facts and conclulsions

found and drawn in the course of fulfilling DAIS Study 33615-76-C-1292, often

referred to as the "DAIS STUDY. " The purpose of the contract has been to

establish a modified instruction set for the present DAIS computer (AYK-15)

and to select a iubset of this instruction set to implement a lower perfor-

mance, upward compatible computer. This report serves as a basis for the

definition of an upward compatible computer family for the Air Force.

A preliminary hardware design of the lower performance computer was

then performed and is included in this report.

Finally, the impact of modifying the present DAIS computer (AYK-15) to

implement the instruction set modifications was investigated.

1. 1 INSTRUCTION SET CHOICE

At the outset, a preliminary instruction set was chosen by the AFAL for

Westinghouse's use as a baseline in its analysis to determine an optimal

instruction set, from a hardware/firmware viewpoint as well as a program-

mer's, for the proposed computer family. Paramouint in the choice of this

instruction set (Appendix A of the original contract'SOW) was the need to

conserve the actual memory space required to encode operational avionics

programs. It was recognized that the best way to implement this saving was

to create single-length memory referenc6 instructions (16 bits long) which

could generate a 16-bit effective memory address (to reference up to 65K

words).

Several new addressing modes were proposed as methods of synthe-

sizing 16-bit memory reference instructions:

a. Register Indirect Addressing

, ,I

b. Register Indirect With Auto Increment

c. Bame l lative Addressing

"d. Lnstruction Counter Relative Addressing

%, Lmmediata Short Formats

1. Irnmediato Long Formats

Of these new addressing modes the most significant in terms of soft-

ware efficiency (defined by AFAL purely in terms of the total number of

t6,bit words required to code programs) were determined to be Register

L•direct and Base Relative addressing. Since both types are each capable

of ayntheimi~ng 16-bit memory reference instructions, they were posed

as alternatives in the selection of the final instruction set. Their relative

strengths were then explored by coding a sample avionics problem

sup~plied by the Air Force in each instruction set (i. e., Register Indirect

and Bawe Addressing).

1. 2 HARDWARE MODIFICATIONS TO PRESENT DAIS COMPUTER

After thq software analysis of the proposed instruction sets was

completed, the tauk of implementing the addressing modes within the

framework of the present DAIS computer was studied. This was undertaken

in two waye: first considering only firmware (microcode) cnangea to the

present AYK-15 computer with no hardware changes, and secondly with

complete freedom to modify or add to hardware as well as firmware.

At this point, t1le feasibility of the goal of 30 percent improved software

efficiency over the present AYK-15 computer with the new addressing modes

was analyzed with respect to hardware/firmware/cost tradeoffs, and a final

instruction set chosen.

1. 3 DESIGQ9 OF LOW LEVEL DAIS MACHINE (LLM)

Another concern in the choice of the optimal instruction set was the

feasibility of subsetting the final set for the lass powerful members of

the computer family. This subsetting al,ýo had to maintain an "upwards

compatibility" within the family, meaning all instructions used by the

%rr -________________maw

"low level' machines would be contained in the "higher level" machines.

This insures that operational soft-ware which would run on the low level

machine would also run on any of the higher level machines in the family.

Westinghouse and AFAL then chose one such subset of the final

instruction set for use in its design of a low-level machine (LLM).

Generally, this subset contained all instructions of the final set except

the floating point arithmetic and double-precision multiplies and divides,

keeping the LLM oriented towards a simple, fixed point, front-end

processor. (Subsequently, floating point arithmetic was added to the LLM

during the design phase.)

A preliminary hardware design of the LLM was then performed. Para-

mount in this design was the use of the 2900 family of bipolar LSI logic,

which has emerged as a front-runner in the rapidly-expanding technology of

the LSI field. As currently supplied by Advanced Micro Devices (AMD),

Motorola, and Raytheon, this logic family meets Mil-Spec performance

criteria, provides low parts count design with low power consumption, and

is reliably available on the market. The AM-2901 four-bit microprocessor

slice is also structurally compatible with the MM-5701 (used in the AYK-15),

making the LLM design directly applicable to the AYK-15.

The primary difference in the two instruction sets was the two

addressing modes. Each set contained a "core" of present DAIS

instructions (referred to as "DAIS Baseline").

The AFAL supplied a set of three sample avionics programs (DAIS
I

Benchmarks 1, 2, and 3) which are detailed in the document specification

number F44615-75-R-1154. Of the three, BENCHMARK No. I was chosen by

Westinghouse for coding in the two candidate instruction sets.

BENCHMARK No. 1 was divided into six program segments as

follows:

(1) Decision and Control

(2) Arithmetic Computation No. I and 2

3

(3) Arithmetic Computation No. 3

(4) Arithmetic Computation No. 4 and 5

(5) LIMIT Subroutine

(6) HMSANG Subroutine

This partitioning was made both to facilitate documentation and to provide

for statistical comparison. It isolated Decision and Control, arithmetic

processing, and certain subroutines for individual scrutiny.

The statistical comparison was done in two reference frames. First,

the relative software efficiency (as defined in Paragraph 1. 1) of the two

instruction sets from the coding of Benchmark No. I was analyzed.

Then the frequency of usage of the non-DAIS Baseline instructions

(as defined earlier) of each instruction set in the coding of the program

was analyzed. This highlighted the relative "strengths" of the new

instructions in each set by pointing out how useful each was in solving

the Benchmark problem.

4

SECTION II

INSTRUCTION SET DEFINITION

2.1 FAMILY CONCEPT (UPWARDS COMPATIBILITY)

If a set of computers, all with varying degrees of processing capabili-

ties, are to be considered a computer "family, " there must be a direct

interrelation among them. A valid measure of the notion of a computer

family is the "upwards compatibility" of the machines. This can be

determined directly from whether or not a fully operational program

written for a smaller member of the "family" can be run directly on a

larger family member with the same results.

To this end, the computer family must be "upwards compatible" in

terms of software. An instruction set for the "higher" level members

of the family should be conveniently subsettable for the "lower" level

family members.

Furthermore, a hardware compatibility must be maintained within

* the family. A fixed set of machine characteristics should be incorporated

* in each family member, with extensions added to this basic set for the

higher levwl machines. This is done to insure family integrity in data

formats, inte-rupt service, and the like.

2. 2 SOFTWARE EFFICIENCY STUDY OF NEW ADDRESSING MODES

As outlined in Paragraph 1. 1 of this report, two candidate instruction

sets (base relative and register indirect) were assembled to compare the

relative strengths of the register indirect and base register addressing

formats. The register indirect instruction set was as defined in Appendix

A of contract F33615-76-A-1292. (DAIS Study) The base addressing inst-

ruction set used was as de.fined in the Westinghouse-prepared document

entitled DAIS Processor Support Software (specification no. MN255R818).

.. ,

a. RESULTS OF SOFTWARE ANALYSIS

With the Benchmark completely coded in both the Register Indirect and

Base Addressing sets, an algorithm was devised to measure the relative

software efficiency of the sets, Using the line numbers associated with

the program listings, a numerical equation for computing the number of

16-bit instruction words needed by each program segment was formulated:

AN. = (END-BGN) - CMT1

BN. = (END-BGN) - CMT

Where:

AN = The number of words (instructions plus literals) required to
code in AFAL instruction set.

BN = As above for Base Register instruction set.

END = Line number of last line.

BGN = Line number of first line less one.

CMT = Number of comment lines.

and i = 1, 2,... , 6 corresponding to one of six program segments.

Substituting into these equations yielded the following results:

(1) Decision and Control ANI
AN = (207-19) -14 174 -- 1. 32
BN I = (177-19) - 14 144 BN 1

(2) Arithmetic Computation No. I & 2 AN2
AN 2 = (195-3) - 2 = 190 BN 1.41
BN 2 = (140-3) - 2 135 2

(3) Arithmetic Computation No. 3 AN3
AN = (97-3) - 5 = 89 BN - 1. 34
BN3 = (75-3) - 7 = 65 3

(4) Arithmetic Computation No. 4 & 5 AN4
"AN4 = (172-3) - 3 = 166 -N 1.20

BN 4 = (144-3) - 3 = 138 BN4

(5) LIMIT Subroutine AN 5
AN5 = (39-3) - I = 35 _ 1. 03
BN = (38-3) - I = 34 BN5

6

(6) HIMSANG Subroutine AN 6

AN, = (98-3) - 2 = 93 - 1.24
0 BN 6BN 6 (79-2) - 2 = 75

TOTALS: AN
AN = 747, BN = 591 B1.N

These results show the Base Register set of instructions required less

program memory than the AFAL set in all six program segments. In

total, the AFAL set used 27 percent more program storage than did the

Base Register set.

In fact, the AFAL set requires more storage than is reflected in the

above figures. Each time a unique address is loaded into the general

register used as the "indirect register" an additional location is required.

The required word holds the constant whose value is equal to the address in

question. For example, on page 51 of the program listing, three locations

would be required to save the values loaded into register A4 on lines 59, 63,

and 74 respectively. This is different from the base addressing mode,

which can address uniquely within its 8-bit displacement range (256 words)

with the original base loaded only at the beginning of all references within

its boundaries.

b. I'NSTRUCTION UTILIZATION (AFAL)

Of the 115 AFAL instructions only 17 were used in coding the Benchmark

problem. A detailed list follows:

INSTRUCTION NO. OF T IMES
USE D

(1) RDA 1
(2) IRS 2
(3) RDS I
(4) IRM 2
(5) RDM 1
(6) RDD 1
(7) RST 8
(8) IRST 17
(9) DRST 2

(10) IDST 9
(11) IRL 7

7

(12) IRDL 2
(13) JRU 12
(14) JREQ 7
(15) JRGT 9
(16) JRLT 9
(17) RSB 2

The ratio of instruction types available to instruction types used: 17/115

=0. 15

The ratio of the number of Register Indirect instructions (of all types)

used to the total number of instructions required for each of the six pro-

gram seg--ents are:

(1) 14/117 o0.12
(2) 13/137 = 0. 09

(3) 6/55 = 0. 11
(4) 16/111 0 0. 14
(5) 12/27 = 0. 44
(6) 0/67 = 0.0
TOTAL 61/514 = 0.12

c. INSTRUCTION UTILIZATION (BASE ADDRESSING)

Of the 60 Base Addressing instructions only 18 were used. They were

as follows:

INSTRUCTION NO. OF TIMES
USED

(1) LB, BR5 55
(2) STB, BR5 45
(3) AB, B.5 9
(4) SBB, BR5 7
(5) SBB, BR6 1
(6) MB, BR5 15
(7) DB, BR5 2
(8) DLB, BR5 18
(9) DLB, BR6 I

(10) DSTB, BR5 20
(11) DAB, BR5 14
(12) DSBB, BR5 13
(13) JCRI, EQ 6
(14) JCRI, LT 10
(15) JCRI, GT 8
(16) JCRD, EQ I

8

(17) JRI 4
(18) JRD 3

The ratio of instruction types available to instruction types used: 18/60

0 0. 30.

The ratio of the number of Base Addressing instructions (of all types)

used to the total number of instructions required for each of the six

program segments are:

(1) 70/118 = 0. 60
(Z) 53/120 = 0. 44
(3) 29/55 0 0. 53
(4) 59/116 = 0. 51
(5) 9/25 0. 36
(6) 13/60 0. 22
TOTAL 233/494 = 0.47

These ratios show the set of base addressing instructions to be more
applicable than the register indirect addressing instructions in a typical

avionics problem (such as Benchmark No. 1), both in having more of its

instructions applicable in the codings (30 percent to 15 percent) and the

overall frequency of their use (48 percent to 18 percent).
Table 1 summarizes the above figures from the comparison of the

two instruction sets.

d. CONCLUSIONS OF SOFTWARE ANALYSIS

In terms of software efficiency, it is apparent register indirect

addressing is a poorer choice for a short memory reference instruction

mode than base register addressing. We can see, from our coding of

Benchmark No. 1, a significant savings in memory utilization with the

base addressing mode (27 percent less memory space than register

indirect).

From the view of utility of instructions, the base register addressing

mode again appears to be a better choice. A larger percentage of avail-

able base addressing instructions was used (30%) than register indirects

(15%), and these instructions were used with over twice the frequency

9

TABLE i

INSTRUCTION SET COMPARISON

Program Total
Segment (1) (2) (3) (4) (5, (6) Program

MEM Usage* 22% 41% 34% 20% 3% 24% 27%
x (AFAL)/
N (BA) I I _I

AFAL Instr 38% 9% 11% 14% 44% 0% 18%
Utilization*"

BA Instr 60% 44% 53% 51% 36% 22% 47%
Utilization

Notes: * Reflects the percentage by which the AFAL program storage
requirement exceeded the Base Addressing program storage

storage requirement.

"Reflects the perqent of the total instructions which were AFAL (or BA)

7 7-0819-T,... 1

(47 percent to 18 percent) than the register indirects in the soltition of

Benchmark No. 1. This indicates the base addressing instructions are

"?richer" in utility for solving typical avionics problems than r-egister

indirects, despite being almost half as small a set of instructions (60 to

113). This is also a plus for base addressing, as less instruction order

types are necessary for greater utility.

In the process of analyzing the proposed addressing mode changes, many

conclusions were reached by the programmers who performed the actual

coding. Wrhat follows is a summary of their comments about the proposed

instruction changes.

For purposes oi this discussion, the following instruction word field

definitions are used

OT - order type code

R A - general register RO, ... RIS

REA - general register used to designate an address

10

-. . .. --- . . ---.t--

R - •eneral register used as a base address re2ister
B

D - displacement field

- binary num'.ber

OCX- operation code extension

EXP - exponent

2. 2. i Register Indirect

Instruction format: ROTRE

16 98 5 4 1

Register Indirect addressing is an efficient addressing mode when there are

repeated references to the same location. When combined with auto-

indexing this advzntage is extended to enhance references to adjacent

locations. As can be imagined, if a program's data can be structured

sequentially the register indirect addressing can provide an increase in

software efficiency over double word instructions.

However, if the data base cannot be structured in sequential nature (as

will typically be true of all global data blocks), then register indirect

addressing will be of very limited use. As an example, consider the two

subroutines below. Both subroutines are constrained to use data from a

global block of data as is typical of many data structures.

SUBROUTINEI A GLOBAL DATA SUBROUTI!NE B

D

RO=A/B* C/D VARA RO (-)C+A
VAR B
VAR C
IrAR D

Structured vs Non-structured Data

Both subroutines are required to pe-rform operations from left to right

in order to prevent overflow or underflow. As can be quickly appreciated,

Subroutine A is ideally suited for iLnplementing with register indirect

II

addressing since its parameters are stored in the exact sequential order

they are needed for computation. However, Subroutine B requires a

different ordering of the global variables in order to use register indirect

addressing. Of course, some compromise of the sequence of the four

variables may be arrived at to allow both Subroutine A, and Subroutine

B, to utilize register indirect addressing of their shared variables.

However, as the number of users of the global variables grow, the task

of organizing the data in an optium fashion for each subroutine user

becomes truly Herculean.

It is primarily for this reason that register indirect addressing is

inadequate for the computer family. Additionally, once a program is

written, the order of storage of the variables may never be altered

without a major rewriting of the program itself. This makes program

revision doubly difficult and is certainly not in keeping with good program-

ming practices.

2. 2. 2 Base Relative

Instruction format: RCT OFFSET

16 11 10 98 1
In the process of arriving at the present set of Base Relative instruct-

ions, Westinghouse relied heavily on its experience with the predecessor

of DAIS, the Millicomputer. This machine used a similar form of base

addressing with an eight-bit displacement.

Although not as convenient for coding as double-word instructions, base

addressing has proven effective in reducing the memory required to per-

form avionics problems. Inherent in the use of base addressing is a

careful planning of the data structure in order to take advantage of the

limited addressing range. It is for this reason that four base registers

were chosen. In a typical problem R4 would be used to access a list of

global data. Similarly, P.5 would be used to access all local variables

12

while R6 would reference a block of "scratch pad" for computation and

intermediate results. The last base register, R7, would then be free.

The main disadvantage to base addressing is the restriction to a single

accumulator. This definitely presents problems when compared to

multiple register capability. However, the full set of register to

register instructions, as well as the double word instructions, are

available when it is necessary to perform operations on registers other

than RO.

The base addressing instructions are not intended to be used solely in

a particular application but rather as a supplement to the normal AYK-15

instructions when memory efficiency is desired. To this end they would

be used or disregarded as the particular application dictates.

2. 2. 3 Immediate Short

Type 1: Instruction format: O oT RA jSD 6 - D 0

16 13 12 9 8

(D 6 - D is a signed seven-bit integer)

Type 2: Instruction format: OT I I A 0Da- D

16 98 54 1

(D 3 - D is an unsigned, four-bit integer whose

sign is determined by a bit in the Order Type code field)

Type l's format for the immediate short would require 48 order type

codes to implement only three types of instructions (Load, Add, & Com-

pare). Since this comprises close to 20 percent of the total number of

order types available, their usage would have to be extremely high to

justify their inclusion. None of these instructions were appropriate for

use in the soft-ware analysis performed. This high number of order types

is too much to pay for three instructions which could not be used in the

programs coded.

Type Z's format requires fewer order type codes (six for the three

instructions mentioned above), but again has a similar lack of utility.

13

The value of an immediate short instruction comes into focus when a

large number of calculations are done with small integer constants, such

as one, two, and the like. This was not the case in Benchmark No. 1.

Further, since short instruction types are the prirnary goal, the load

and add in-mediate short instructions may be performed with the more

general base addressing instructions. (This would require the alloca-

tion of a literal in a global data block).

2. 2. 4 Jump Conditional (IC Relative)

Instruction format: OT ISD 6 DO

16 98 8

IC = IC + (D6 D0)

This addressing mode, whose signed displacement allows conditional

jumping within 127 locations of the present IC value, is definitely

advantageous in increasing software efficiency. In solving the Benchmark

problem it was applicable for use in approximately 10 percent of the entire

program. It is an ideal short format for program loops and small distance

jumps.

2. Z. 5 Jump to Subroutine (IC Relative)

Instruction format: OT IR~ A D6

16 13 12 98 1

It is questionable that subroutines could be located within the range of

this instruction with high frequency. Unlike the jump conditional instruct-

ion discussed above, most subroutines will not typically be co-located to

their calling points in the main program, as illustrated by the Benchmark

program. This is not a desirable instruction.

2. 2. 6 Stack (PSH/POP)

We would agree with AFAL in its recommendation for register to

memory stack instructions. Since multiple stacking and unstacking of

14

registers is desirable in many program applications (subroutines, argu-

ment passing, interrupt save status, etc.), we would suggest the following
formats:

Push instruction- OT N1 R

16 98 54 1.

RA... RA+N i-STACK

Pop instruction: 07O N R A

16 98 54 1

"Top N locations on stack -* R A.N R A

(R15-N-I) - R15

It is assumed that RI is the implied stack pointer. Therefore, the PSH

and POP instructions may be used for handling multiple registers. Of

course, if N =0 a single register will be transferred.

The use of the stack as an argument-passing instrument is detailed in

Paragraph 2. 6, Re-entrant Subrouitines, of this report.

2. Z. 7 Immediate Long Formats

Instruction Format:[cc fo I r I
16 9 8 5 4 1 16 1

This becomes the format for all immediate long instructions. Each of

the 16 possible instructions is distinguished by its code in the 4-bit

extended op code field OCX. Using the OCX field as such, eliminates any

indexed immediate long instructions.

The advantage of this format comes from the abiliLy to compress all the

AYK-15 immediate addressing instructions into a single order type code with

unique OCX codes, However, the ability to index the operand is sacrificed.

Since immediate addressing is not an important addressing mode (never

used) in Benchmark No. 1, it would appear that changes to the immediate

a ddressing structure of the AYK-15 have little impact on software efficiency.

15

i, Nc'\V ['AA \F 'OR\1 .\TS

A *Uwtablo ot of data formAts was to be chosen for the coinputer family,

hoth (w, ikad-polnt and flohing -poinc nurribers. Both hardware and soft-

wa r ot ivluonoffs wvoI la de fo v a a ch format.

~, , l"Nvi-~it Multi rIV wind Divide

A i k •-point mnmber notution nvust be considered when fixed-point multi-

pl', tid divitio histructions are designed and implemented. The choice for

,,l aA notitun comoe down Yurely to choosing the position of the binary

po int, U 't",o blnA-y point is placed at the left end of the 16-bit number,

bwCoon thti sign bit and magnitude bits, the machine is called fractional. If

thO mirn bit is placed at the e~xtrome right end of the number, at the right of

tho 15 nia~giiude bits, tho machine is considered to be integer:

16 L--- .binary point

Itege r jS XX X.j

16 t binary point

Since tlvi choice of fractional :-r integer representation has no signi-

ficamt impact upon the hardware, the choice is truly one of convention.

TVs is i•ufstrated by the widespread use of both conventions by the mili-

tary compte r conmrnurnity:

MWCHINE MANUFACTU'RER NUMBER CONVENTION

(I CP-t138
(HARPOON) We itinghoase fractional

(2) AN/YK-15
(.!,A IS) Yestinginouse f ractional/integer

(3) SKC-2000 Singer-Kearfott ,fractional

(4) AP-[IBM fractional

(5) 4-P! TBM fractional

(6) AN/UYN. 30 Hughes Aircraft Ifractional

(7) AN, UYK- 0 Univac integer

16

SI~'lll'TlK tllN I~111 ~ f'lJ!l!'l lll'IwTWORM -

The fractional representation is more common, but again, this is

merely a convention. Perhaps the only area where one notation is pre-

ferable would be when calculating indices into an a rray of data. Here,

integer representation would be more convenient.

Since AFAL has expressed a preference for integer notation, we would

propose that all fixed-point multiplies and divides be made to conform to

the integer format.

Also, we would recommend that single precision multiplies return a

full 32-bit product. This allows for retention of added significance during

single precision computations and is common practice. A summary of the

proposed multiply and divide instructions follows.

a. MULTIPLY

(1) 16-bit MPY (M, MR, MI, MIM)
- MPY algorithm is integer

- 32-bit result returned in R and R + I (where R is even)
A A A

(2) 16-bit MPY (MS, MSR, MSI, MSIM)
- MPY algorithm is integer
- 16-bit result returned in RA

(3) 32-bit MI'Y (DM, DMR, DMI)
- MPY algorithm i.s integer
- 32-bit result returned in RA, RA + I (where RA is even)

b. DIVIt-E

(1) 16-bit Divide (D, DR, DI, DIM)
- Divide algorithm is integer
- 3Z-bit divident in R A' (RA + 1) is divided and quotient
returned in RA and remainder is returned in RA i- t (RA is

even)

(2) t6-bit Divide (DV, DVR, DVI, DVIM)
- Divide algorithm is integer
- 16-bit dividend in RA is divided, quotient returned in RA

remainder returned in RA + I (RA is even)

17

- ---- '"=_-:m l] "•1•''1Irl I r --~ '1 q lT iH!lFII Tiq 11 i! ~ ' '4.•'".r'"-.. --..----.-.. - -.- - " i ..

(3) 32-bit Divide (DD, DDR, DDI)
- Divide algorithm is integer
- 32-bit quotient is returned in R and R + 1, remainder ij

A A
not saved

2. 3. 2 Floating Point Format

The choice of a floating point format presents a different type of pro-

blem than the fixed-point choice. A floating-point format definitely impacts

the amount of hardware necessary for floating-point calculations. Its

choice can also affect a utility and readibility to the programmer.

Westinghouse, in its present AYK-15 configuration, has used the following

32-bit format for its single-precision floating-point word:

24 bits 8 bits ----

I MANTISSA s LXI

mantissa signl Lmantissa binary L exponent sign
point placement

Each bit of the 24-bit mantissa (fractional notation)is as follows-

I (Sign) 2 12 -2 ... 2- 2

The exponent (8 bits) is in a two's-complemnent notation, with the follow- ;

ing format:

((Sign) 26 z ...5 z)

On a sliding scale, from hexidecimal 0016 to FF 1, the exponent would

appear as follows: FF 2- 1

80 2"128
7F Z 127

00 20

The AFAL has suggested a slightly different format for a 32-bit

floating point number*

32 31 30 24 23

E S XP . MANTSS

mantissa Lexponent -binary point placement
sign sign

18

The mantissa, while separate from its sign bit, has the same 24-bit

meaning as in the Westinghouse format. The AFAL has suggested, how-

ever that the 8-bit exponent be considered as an excess-128 number,

meaning the actual exponent value is "offset" by positive 128 0, On a

hexidecimal sliding scale this looks like:

2 127

8121
80
7F 2

0 2- 2128

The two notations give both the same mantissa significance and

exponent range (128 < EXP < 127). However, their individual placement

in the 32-bit word field turns into a non-trivial difference.

From an aesthetic viewpoint, both formats have pluses. The Westing-

house notation may be slightly more readable, being in the familiar
(s igrn) ZXP

scientific notation order (sign). Mantissa X 2 . The AFAL
-128

notation, on the other hand, has a floating point zero (0 XZ 2 8

equivalent in hexidecimal of all zeroes (00000000) where the Westinghouse

format is hex 80 (0000008016

The individual programmer can also find merits to either convention.

in the AFAL format, a relative measure of the sizes of two floating point

numbers can be obtained by comparing their integer values, as the major

size indicator (exponent) is in the most significant bits of the word and is

on a graduated, smallest-to-largest linear scale. This does not "drop

out" directly from the Westinghouse format.

The Westinghouse format has the programmer's advantage of being

directly accessible to exponent scaling via the machine's byte-mode

19

instructions, as the exponent falls on an eight-bit boundary. The programmer

can do a load byte from memory, add, and store byte to accomrnlish this

directly.

These differences pale, however, when compared to the differences in

the hardware implemented for floating-point arithmeiic. The Westinghouse

f ormat makes it simple to "strip' the exponent from the mantissa for

processing, and since the exponent is in two's complement notation, a

simple addition or subtraction provides the proper new exponent in multi-

plication or division directly. Exponent over or underflow also falls out

directly with no new or extra hardware, because of the four-bit slice

structure of the 2901.

The mantissa is also conveniently handled once the exponent is stripped

away. The eight bits in the exponent can be directly zeroed out without

altering the mantissa value, as they are located in the least significant

portion of the 32-bit word. Mantissa overflow in addition or subtraction

is also obtainable with no extra hardware.

Floating-point arithmetic becomes much more difficult with the AFAL

number representation. The exponent does not fall on an eight-bit bound-

ary, making normal operations on it (adding or subtracting for multiply

and div-ide, or direct number scaling) somewhat more difficult. Also,

special hardware must be added to detect exponent overflow or underflow.

More hardware and/or firmware is necessary to strip this exponent away

for computation.

"Mantissa handling is also more difficult. The eight exponent bits can

no longer be simply zeroed out, as they are located in the most signifi-

cant portion of the fraction. Instead, the sign bit must be tested and

propagated through these eight bits. This requires yet more special

hardware. And still more extra hardware is necessary for mantissa

ove rflow/underflow detection.

20

The amount of extra hardware necessary for floating-point conmputations

(approximately 15%a of the parts count) with the AFAL representation outweighs

any advantages it might have from an aesthetic or programmer's view. "Ve

recommend the use of the Westinghouse representation on this basis.

2. 3. 3 Extended Floating.£-Point Arithmetic

Two extended floating-point formats were also studied. The first was a

three-word format, with an eight-bit exponent and 40 bits of mantissa,

compared to 24 for the single-precision format. The second was a four-

word format, with 56 bits of mantissa.

At approximately three and one-half binary digits per decimal digit of

accuracy, roughly seven decimal places are obtainabie from the single-

precision format, 12 from the three-word extended notation, and 17 from

the four-word forniat.

While the extended floating-point formats do afford an increase in

accuracy, ther' are several points that are well-worth pointing out:

a. When making calculations on extended floating-point numbers,

the number of internal regi-,ters necessary becomes rather large. A

multiply instruction with a 48-bit number requires six registers; for 64

bits, eight registers are necessary. This can severely limit the usage of

other available registers for other variables.

b. As the width of the extended format increases, the amount of

extra hardware necessary in the EAU (Extended Arithmetic Unit) increases

drastically. In jumping from a 24-bit mantissa to a 40-bit length, an

extra eight bits must be added to the EAU, which is of 32-bit width. This

is an equivaL3nt of 10 to 12 16 -pin DIP pack equivalents. And to go to 56-

bit mantissas from 40 bits, another 16 bits on top of the eight already

mentioned are necessary. At lr) to lZ 16-pin packs per eight bits, it would

cost 30 to 36 16 -pin pack equivalents over the presý,;nt 32-bit EAU to

process the 64-bit format over the 32-bit single precision notation,

-, I

c. The added hardware in the EAU would also slow down calcula.

tions in the single-precision format. Since the "extended" EAU wotuld

"use" all of its hardware even in single-precision mode, several clock

times may be wasted in clearing out or sign-extending the upper parts of

the registers not used in single precision.

In the light of the above mentioned complications, realizing that the

single-precision format is accurate enough for many applications, we do

not recommend implementing the extending floating-point formats.

2. 4 CONTEXT SWITCHING

Context (or Mode) switching refers to a major change in the processing

"state" assigned to the computer, as would often be encountered at soft-

ware breakpoints.

The complete "state" of the computer is defined by:

a. The current value of the !C.

b. The Interrupt Mask.

c. The Arithmetic Flags (Overflow, Negative, Zero)

Context switching is accomplished by an orderly replacement of these

three quantities by a new set corresponding to the "new state" of the

computer. Referring to these three quantities as Program Status Words

(PSW's), context switching is performed by "loading the PSW's. "

Similarly, interrupts may be handled in the same fashion by simply loading

in new PSW's to define an interrupt service routine.

2. 4. 1 LPSW Instruction

A new instruction (LPSW) would be added to load the three PSW words

(IC, Arithmetic Flags, Interrupt Mask) from successive memory locations

pointed to by the, effe,-tive address. The instraction would be 32 bits long

and of the format below.

16 98 5 4 1 16 1

Execution of this instruction will then accomplish context swvitching.

22

In keepiniv with tile conc ext of contex't swi tclii~ný, tho 11 hr dla rto in e rrupt.

%equence would be -alte red. TIhe present DAIS machine use two fixtid

ro erory locations tO VECtOr' eatch Of thle 16 possible leVelS 0(-1terrupts.

The first mem-ory Location would~ be re.-defined as the address o! wvhare to

store the cu~rrnt. PSW's. Tile second memory' location wou.ld ba simillarly

re-defined 1,o be tne address uf thle new PSW's to be loaded into the c:orn-

put er. As is customary, this wvould be accornplished under hardware

cont rol .

In schematic form, an interrupt would be handled as follows:

VCCTOR TABLE LINKAGIE

01 DMSK fl Comijuzoi-State

F LAG$_______GS at Time of

OLD IC Interrupc

LPTR - Linkage PointetR
SPTR -&-.rvice PointeR

Now Computer NEW MASK
PSW to Start NEW FLAGS

oNEW IC

Of .ourse, a return from interrupt would be accomplished by executing

the LPSWV i~nstrudction using the value (LPTR) for arl, address field.

2. 4. 3 Privilived Modes

In data processing type environanients, some machine instructions may

be reserved for execution by "privileged" users only. This is typically

desirable where the user mnay be inexperienced which requires that the

computer's3 operating system m-ust be protected. Howiever, this has not

generally been a problemn with nailitary computers due to the high level of

refinement enjoyed by an operational program prior to its inclusion in an

operational envirozment.

23

-ir , , n . ~ ~ , . r ~ , ' , .

,\'ave•.•?eleu s, should a privileged mode of operation be desirable, it may

be ontered by a control bit within ia PSW word.

2. 4. 4 hMultille Reizistor Sets

The most common scheme adopted by the industry is to offer two sets

of registers, thus allowing one to be used for processing interrupts. This

obviates the necessity of storing a machine register upon interruption.

Should a second set of working registers be desirable, Lts selection may

be indicated by a bit in a PSW.

2. 4. 5 Ey.tended Memory Addressing

The present DAIS addressing capability extends to 16 bits, or 65K of

memory. This can be extended through the PSW by the inclusion of a

block register bit or bits In the word. Each time the PSW is loaded, a

block register would also be loaded with the bit value in the PSW. This

register would hold the block value until a new PSW is loaded, providing

upper bits for memory referencing.

W'e recommend a one-bit block register, giving up to 130K addressing.

24

2.4. 6 PSW Formats

The three PSW words would be of the frrniat below:

, Interrupt MASK PSWI

h lLowest levelHighest level (0 On, 0O -Off)

(1 =On, 0 Off)

Block Register

Interrupt (1 = On)

Mode (1 - Exec, 0 User)

-- ,• -•------ ----..-- Registar S~t

Zero Flag

Overflow Flag

Negative Flag

IC at Time of Interrupt PSW3

1 16

2. 4. 7 Re-Entrant Subroutines

Subroutines are defined to be "Re-entrant" whenever they may be

interrupted by a hardware interrupt and subsequently called prior to their

completion of the interrupted computation. Therefore, all intermediate

results from an interrupted subroutine must be saved and then restored

when the interrupted subroutine is allowed to resume.

Lf intermediate results are entirely contained within the register set

then simply preserving the register set upon interruption is sufficient for

rniplernienting rc,-entrant subroutines. However, if intermediate values

are held in scratch nemory, then this memory must be reserved at the

time of interruption (and not returned for use as common scratch). The

collection of information necessary to "re-enter'" an interrupted subroutine

25

(i. e., the intermediate values, etc.) at the point of interruption is said to

be "Interrupt Linkage.

If a re-entrant subroutine is allowed multiple interrupts then multiple

sets of interrupt linkage must be preserved.

Not all subroutines need be re-entrant. (In fact, Westinghouse software

does not allow re-entrant subroutines due to their aforementioned

complexity). However, a generalized scheme for implementing re-entrant

subroutines on the present AYK-15 machine will be presented. Also,

alternatives to the present implementation will be presented.

2. 4. 7. 1 Subroutine Argument Passing

By convention, arguments will be pushed onto a STACK prior to calling

a subroutine. Therefore, if N arguments are passed to a subroutine, the

calling program will first push all N arguments onto the stack prior to

call ing a subroutine. Presumably the arguments will be pushed in the order

the subroutine requires their use. Also, the calling program will assign

a scratch memory area to the subroutine by passing a starting address to

the subroutine as an argument.

At the time of a subroutine call, the stack will be configured as follows:

ARG #N (Argument Used Last)

ARG #2
ARG TI (Argument Used First)

STACK PTR.) _--

2. 4, 7. Z Subroutine Calls

2. 4. 7. 2. I Present DAIS - Subroutine calls are performed by a jump

subroutine (JS) instruction (refer to DAIS Processor Support Software,

26

p. 124). The return linkage is placed in the register specified by the R,

field of the instruction. As described, this instruction also implements

the subroutine return. Therefore, at the beginning of a subroutine, if A2

contains the return linkage, the register set will be as follows:

AO

At

A2 RETURN ADR MEMORY

A 15 ISTACK PTP. STOPO T

if nested subroutines are allowed, then A2 must be saved prior to the next

call.

2. 4. 7. 2. 2 Proposed Change - Alternately, the return linkage may be

placed on a STACK so that returns may be accumulated to accommodate

re-entrant code. An instruction to call a subroutine of the format below

would be necessary.

JSR X-X R. AF

16 9 8 5 4 l 16 1

IC - STK
R +AF) -, ICx

It is assumed that one of the general purpose registers would be an implied

stack pointer.

The calling sequence for a subroutine would then be:

STK ARGN

STK ARG (N-I)

STK ARG I

JSR SRTN

27

At the time of the call the stack would be:

ARG #N

ARG #2

ARG #1

STK PTR----- IC

Note that the return linkage is now on the "top of the stack. " The

subroutine must first "pop the stack" to save the return linkage prior to

popping any arguments. Thus it would seem preferable to simply leave

the return linkage in a register.

Finally, a RETURN instruction must be added to pop the return linkage

into the IC. This, however, can be a short instruction since all addresses

are implied. The return instruction would be:

FRTRN X X

16 98 54 1

(Top of STK) -* IC

Now a complete comparison can be made of the two methods of handling

return linkage. Consider the two calling and return sequences shown

be low:

Present DAIS Proposed Change

CALLING PROGRAM CALLING PROGRAM

JS AZ JSR SR TN

SUBROUTIN E SUBROUTINE

SRTN SRTN USTK TEMP SAVE LINNK

28

J OA2 RT Ri<

Total word to Call & Return = 4 Total words to call & return 5

If we compare the Subroutine Overhead (number of words to link and return

from a subroutine) we find that the stacking mechanism requires one more

word. Therefore, the two methods seem nearly equivalent in terms of

software efficiency.

2. 4. 7. 3 Hardware Implications

Employing a stackinz mechanism for subroutine returns requires addi-

tion of the PROM as specified in Section Z. 5. 2.

The PSH and POP instructions as defined in Paragraph 2. Z. 6 would

require minor hardware modifications to the present AYK-l5. Table 4

presents the summary of modifications necessary to the present AYKi-15

processor.
Microcode flowcharts for the PSH, POP, and LPSW instructions are

presented in Paragraph 3. 3.

2. 4. 7. 4 interrupt Routines

If re-entrant subroutines are tc, be allowed, then a complete saving of

machine status (arithmetic flags, registers, and IC) is necessary upon

receipt of a hardware interrupt. Further, if nested subroutines are to be

allowed then stacking of interrupt linkages is desirable.

2. 4. 7. 4. 1 Interrupt Stacking - Present DAIS - Interrupt linkages may be

stacked in the present DAIS machine by use of the STK and SM instructions,

Recalling the interrupt structure of DAIS,

VECTOR TABLE L~qKAGE WORDS

WTRPT LPTR I FLAGS

NEWIC L2 ic
an interrupt causes LPTR to be fetched and used as a pointer to the

29

hitagewors.Afteri the ari~1thino flags And Increrented IC are storaed

in tho linkago wojrds, the servcet routine is begun at address NEWIC.

To provtd• compeote linkage takitig the service routine will be:

'YE(|UNNI1NO OF INTE-flRUPT SERVICE

NWVI• STX AIS, Li .STACK FLAGS

STK AIS, LZ . STACK IC

SM 15, 0, AMS STACK REGISTERS

AIM A15, (l17~) . MOVE STK PTR

BODY O0F SERVICE ROUTINE

Ei'ND OF SERVICE ROUTI.NE
SiM A15, (160) . MOVE STK PTR

LM 15, 0, A15 . RESTORE REG.

USTK A15, LZ

USTK AI5, Li

EXS LI .RETURN

"END It-TERRUPT SERVICE ROU=ThE

2. 5 CONCLUSIONS

W. 5. 1 Summary of Propcsed Changes

2. 5. 1. 1 Util[zing Only Firmware Changes

A\ can be seen from Tables 4 and 5, the only modifications which can

be accommodated on the present DAIS machine with no hardware impact is

register indirect addressing. Hence, if this were the only modification

made to the present DAIS computer, new microcode could be added to the

existing machines (provided some "S-types't were el~iminated) to form the

nucleus of the computer family.

30

- ----- ~

However, as discussed in section 2, we have been unable to achieve the

desired level of softmare efficiency (3071- irprover--ent over present AYE-15)

by using only register indirect addressing as an addition to the present

DAIS baseline instructions. For this reason we would conclude that firm.-

ware changes alone are not sufficient to satisfy the goals of this study.

2. 5. 1. 2 Utilizing Hardware and Firmware Changes

Section 2, illustrated that the desired improvement in software

efficiency can be achieved by the addition of base relative addressing.

Although requiring minimnum additional hardware, the benefits to software

efficiency are most dramatic (-- 3 6 ,o improvement over present AY--15).

Therefore, vie would recommend that the hardware changes listed in

Paragraph 2.5.1.1 be incorporated into the present DAIS machine.

These changes would require the alteration of MCI and .ICZ, to allow

for t.e addition of the RROM and S-Gates as shown in figures 2 through

3. Also, some minimal backpanel wiring changes would be necessary

between MCI and MC2. Although requiring changes to tvo printed wiring

boards, these changes are, zonceptually, of minimal complexity.

Therefore, incorporation of the hardware changes to accornnmodate base

relative addressing, is the only acceptable alternative to achieving the

desired increase in software efficiency and should be incorpordted into

the present AYK-15 machine.

In tables 4 through 7, each case is expressed separately. If multi-

ple cases were to be incorporated, the "costs" in the columns labeled

microcode required, hardware required, labor, and parts are not necessa-

rily added. For example, a memory controller card would require new

artwork for one change or many changes, and microcode routines would be

shared for different changes. LE necessary, new microcode storage would

be added.

31

Purpose To transiate the RA.AB f-elds of the 6-8-t Base Reia ...~ forniat

!o register addresses
M U

MOR2 ~

4

New ROM.~ b SO

N ev M pA o 16 1

DI Ui

Additional Hardware 2 1 2 16-pin eauivalent packs

Changes. NIC1. MC2, backpanel 7 0819-VA 2

Figure 1 .SROM

Purpose Used to generate register addresses fronm the order type code which
is contained in the MSB of MOR2.

MBLIS

MORA2 MR

8

New ROM

PROM 16

DI BUS

Adcit-ona! Hardware 2 1 2 18 pin equivalent packs

Changes MC1. PAC2. backpanel 77-0819-VA 3

Figure 2 .RROM

32

P.aPou e To siqn extenrd. ,in dddrYss 'weln for 16 bit arithmetic .vith the CPU

MBUS

New Li)MOR2 MORI
S ignal - - - - -

.4

8
New gates

AddI;onal Hardware 3 16 pin packs

Changes. MCI. MC2, tackpanel 77-0819.VA-4

Figure 3 S-Gates

Prouse To transsate the OCX field or *mmedate ong nstrucorons to strtr•;q

addresses for ucoUe

MOR2
BiTS 1 4

NewRO

.lew y• PTlREN
-New 50oc -5 V----. ROM•

~A tftO(;

S.gnai

8

INSVI 8
rhpte,•€clurc on ',-I ~CZ 'r Decu'^

77-0819.VA
5

Figure A PT5ROM

33

- I------lE --I

2. 5. 2 Final Instruction Set

Table 2 illustrates the final instruction set for the modified DAIS

computer as chosen from the findings of this study.

2. 5. 3 Subset for Low Level Machine

When choosing an instruction set for the "low-level machine" of the

computer family, we w. dd recommend that a subset of the instructions

of Paragraph 2. 5. 2 be chosen. Further, those instructions which required

unique hardware to implement should be excluded from this set. This will

!nable the low-level machine to reach a minimum parts count with the

ensuing advantages of low volume, power, and cost.

In keeping with this goal, we would recommend the elimination of the

floating-point instructions, as well as the double precision multiplies and

divides. Both these instruction types require unique hardware due to their

complexity.

The elimination of these instructions would be in keeping with the goal

of a low-level machine oriented towards the simple, fixed point, front-end

processor.

Table 2 illustrates, in instruction matrix form, the subset of instruct-

ions

34

- I
I4 It 0(0t x .(.(9 a 4

0 6- >

c - Q a a I

0- 0 -A0 0 0 a

6-L4 x

<<UU :

0U

...

0 ii

S..~ .. i.. .(

z >0

S0 0 0' A a

350

• ' ' ' I I I '" (.0 0 . .. -.. . . ' . 4 0 '

jj 7 7 .,I I

a: X 0 0 'A V7 W 0z

z
00~~c ca M

03>

912 000 000000 ca
MO m0 w(0 c n CC 'a cc (CC CC

0 cc0 cc0 cc00 0

00
u 00

GO 03 40

01

0 cc ~ '~0 0 ~ T M X * X 0 0 X~
0~~4 000 a~.0. - 0 0 0 00000 co o

.40c .0 .0 .0 0 00 00 0w m0< < < 0 0 0 0

0~~~t < ~ 4 0 ~ < 40 0 wj .

3003 N0U.VE13O 1i0 ±1150 X3H .NV0[ziINDI5 J.SV31

35

1-4'

A - a 0 'A -A

0 1 .~~

C4. W. m tt

(a 14 0 w 4 '

"- c & C a ; 2 0 a

cc 0 0: -, cc 0". 4

.'.. 1 Ic I 'A mi ,. CC at
p 'A cd 04 04 A la Ai C0 -i 4 0 1 ca

so

0 z O0r 1a l w4j cc90 1 0 ' 0 11 0 W i .'A M 0 4,0 .1 o 1

a00 N-, vla 4 0 i-. l Wi iN OI., I SW

-4 36

MODIFI("ATIONS 10Q PHESE1NT DAIS

The har dwarti anid fi'wa~roi (fille va-ceode) implications of mo'10fyinrg the
pr~aianc DAIS rniachlin to includ~e the ntkw instructie'ns, addramating schirmts
and floating-point brithinatic forimats avd presented iIn ta1~ail 4, 5an

6, -epectively.

"3"1 1 I1trctlonlchanclea
Each, Iria truc tkoti optloln (tjbhit 4) anid addressing moude (Lalblv 5) is

evaluated with vespect to si prarnateters

4,. 40T Codes- Tho number of Order Type Codes required for the

Instructhion or addreasing mnode.

TABLE ~

N'~EW INSTR~UCTION EVALUATION

Change JOT Codes Tim, (j.Usec) CPUU P MC ýAP Hard Req'd Phvsical Changes

1. PS H 1 (2.8 - 1.4 N) T 6 10 PROM MICI, MC?
RSAV CPU

Back panel

2. POP 1 (3.0 + 1.6 N) 7 9 PROM MCI, MC?
RSAV CPU

Back panel
3. LPSW 1 3.8 6 15 INT

A, Backpanel

77-0819.TA,8

37

D)AIS STUD)Y AD IA~'Si1,NQ MOVE. E~VA LUATION

(SHEE~i3T I or 2)

~O~i L1IN Y C'~TIM I ~ 0 CPI~j A M1) "&N HO RIQq) CHANQIU CUMMIN's

It~~5 kIaT40 1 *12.0 1 ' w

4118 11 ItIDrT A U OIC 1 2-40 Nn

14 1

kiiI,0 Si~T H OR II Ott NC l .42 roack

'8 IA

F0 6~9 4 10

______ 43 2l) ROM MCI. MC?.

16 13 17 9 *14i 2J,)PtN ai ~ t.

5 JUMP CONO IC REL 5 1 PROM mCI,mc2.
- 7 3 F~ROM *Sgatej eke4

8 JUMP SUGt IC REL t.j 7 PROM mcI.kmC2
LII2~I ~ ool 2 2 PROM - S-041"B~pn,

IC Rh~LAT-V(SHORT 9 2. 4 Nome PROM Julo of

Z~o liK .. 591, Carry 07
2c98 2 MCI. MC2. aut Wr

_________ 1 Ilckpanol Haedvpart

8 8 01T IASF. REL 7 4 412.U J t 13 SROM mcIM.C2, only for
@b-j~~ 2.02-0 I3 SROM -*Ot BackpartF 10n S,

II - C
9 ASE REAT.VE SHORT Yo202 20 32P--ml.C

ORI narrdgatt chigO Ituckantl

16 1 10 9 1 Slattt

10 IMN'EOIATE LONG Ib fo 1 1.470 -O 9(T O i I C.Gnrt w
P Xminor O)P BaCkW41I1 newv iflfU

C-10910 numbq'I '*Ie. to nostt in # te~t iritnnr
Acdie,4tmi m'odes invistqtto wed I SOW amenament No I

.,a iOewng nq oot inveliqyale oar SOW amendment No 2 770819 'TA 9

38

TH' ISY' 01,lQ)A, ,v

)I)AIS ; .I's:h) n A 111 I " 1,1IN(I 1I)l'lVD MOD ,, V 4 VIMtI.A.IION

(11q,T 24 Ov, •

,) ilell ' 11)1 101 111 cli l lii i 11141c llie uyly411,1 lt~il lu 4Ill.ItII~ll

A tu iI Ih)t)14t I m llll l 4- n l litlil14i 111hli 4 1i Ih I i S l) l{y IISIn i, 141,1, 1,lie i 0lllh 4)5

() 1 1104 uP D ArI NllI1114 mw111 lit4))j It I141V14 6)101 fI l " r 1" 0 ll.~i w 144I nf 14)1140'ý1 nir lno IV eral) I, 111 hi .

%hoiK 1411 !4 Ih411v* 01 ln lm q htot~ ol 11tll~

lira 11 11 ' h Inll 1u 1 t I 0 I .I OiS a .'03 Ilhillw a llods 0 welli s.lW1tl i

aoll 11"o
"1 I)lIk llltAt{03 AIltiuulh 111t, nul1i1lei of 14Ioaily! c;linl!llli- |IUit 11vu ll Ilulcitili Ilthiiltid fo ill ltls" h11101100

It ,, I %- higio 1401, Ihlls !•ould ip clledicati consid"Idilhl h¥f ly a iliuý1 tlonatl chluil'Q f el itltll Uiitlacl
-- lilll!,•'lioill Spocifihcall¥. who1ncvoi ?III ',S lylle intmlllU mll lot slitliedhl til DAIS co pi ttlille

1Im I "I'lln"nalliolnl iIt iw tilled 11 haO l 4v lo tl utlle Indufectl 1o1 ro l, Iwo il~luk ni ill oI, mei ol €C iIIIIole

I~~J 1110fldllill hy Vihll I imldoll!• SOW)

I 1 I lie amllIr im li 'lu s fiimt ll! lie 11i ul ilalAlivu Shiort insfucthon, fivon tin tIlll f: it dil overagev time, I lt,.

4 smllllo wfill(, tie lh ili111tut.li n .I twsil

t01 .olilvs W ,0 1. (). 03
08.00l.0A,06.

t(.0,1),•r.01-
1 11. 12, 13
I14. lb. 16, 11

30.31.233
.14 3S.36,.1!

h 51nltin if old hltle in t Fur tlions 2l.8l Olell

01- cliille) 0)4.Ob,063,07

O;1 blu1h wold litch iniliroctlon1 2 6.ucic
O0 Lo•de) 18,10, IA,1Ih

20,21,22,22
24.,2 .26,27

(I D)uultl word stole 1instructionl 3 2) iec
OP codes It(1.). 1 1- If-

Ju1 ,) ClIll11nill iUi'4l. 1i v1 2 0oi c tit) bIranch/2.2y Set: branch
O)P 1:1lod 38.,9 3A (Incleimuntl

3C,3r, 3E lec•rnent)

I JtiJ I llOllive 2 0,, asc
OP clelds 3B Ihliloremenl

3F Iilcreilnenit)

I. le4 11111h0leilate Lon lll IISIIutiO loll l at llnvaslilaed elimilnates indexed immediate long Inslructions.

This n11an1 the 111l1ii4eu11e CIIItII) longler do

R5 - 3 I 12 • LIM R2. 13. R5

AS on1 Inl"t(llC(l1ll. but1 rmus51t now do(

Rh- f2 - 1LR

8t2 .3 ','2 ' AIM

t ,kewise. H2 t R5 - 3 - F 2 = AIM ,12, 3, R5

but must alto do, Rh5 - 82 L0

R 2 3 - R2 - AIM

Q) The inlstrul:tions MIM (10 x 16 ý 31) anti SOiM (16 - 16 16) are not presently implemented and
the microcode necessary is included in this chart.

0 The range of I is 1 . I , 16. therefore the programmer and/or assembler will have to code the
followins vlues for I:

1t10 BIT VALUES
1 0000
2 0001

15 110
16 tit1

The CPU hardware will add I to I and assign the correct sign as designated by the OP code.

O The piebent DAIS machine architecture contains a 4bit condition status register with one-bit allocated
to each of the following conditions:

a. Le:u than zero, less than (condition)
b. Equal zero, equal (comparison)
C. Greater than zero, greater than (comparison)
d. Overflow, underflow, abnormal, etc

This does not accommodate a jump on carry condition. However, the carry result is available from the
carry save flip.flop, and is used during micro-code branch conditions, By specifying a separate op code,
new micro-code ca.1 be written to generate the deslred Jump On Carry instruction. All required hardware
exists, only firmware changes are required.

77-0819-TA-10

39

-i*--.--.l--~* - - -'W r-, 'I--

4) -'s w co
0 Z: w

0~

E Ec)
i~I >.o

- 'i- L

0 o

C~ U) C.O (0(0
0
c. 4

o c
r .c

-C :R ..:

u ~ ~ ~ ~ ~ 0 -sI- ,

S, o a

o".

*~X) - C-0 c
:2 LH a. -i C L

I (0 -

x o 0 0~.

u5 Q) Z) Cr_ Cc "
<~ C.. cnCL00

HI co1
.m 2 C

cc -5 .C

or- OC 1-

0 .:3<

4) I - Lm E

co L. 00 w c A

40

b. ADD TIME (Table 5 only): A comparison of a single precision

add time for the addressing mode versus the comparable time for a double

word instruction. This number is expressed as a ratio with the double

word instruction time being the denominator.

c. Time (Table 4 only): The execution time (inwsec.) required for

the instruction.

d. ClU - A-p: The number of CPU m-program words required to

implement the addressing mode or instruction.

e. MC - u-p: The number of Memory Controller m-program words

required to implement the addressing mode or instruction.

fL Hardware Required: The additional hardware necessary to imple-

ment the addressing mode or instruction on the existing DAIS machine.

g. Physical Changes: The modules in the existing DAIS machine

which must be modified to accorimodate- logic changes in order to implement

the addressing mode or instruction.

3. 1. 2 Changes for Floating-Point Instruction Formats

The changes to the present DAIS computer for the three Floating-Point

instruction formats are shown in table 6.

1. Changes required are for adding 10 new parts for the excpon-

ent arithmetic and reconfiguring the three boards. However, the EAU would

still consist of one control board and two data boards.

2. Reconfigure EAU functional schematic but still need only I

control board and 2 data boards. Forty new h-•emory controller p-code

locations needed to handle the extra mantissa word, Thirty-four new parts

added for exponent arithmetic and mantissa arithmetic.

3. Reconfigure EAU functional schematic and add hardware to

accommodate additional mantissa length. For this format the EAU will be

made up of one control board and three data boards.

41

-l lea ill n-il i 1111 !-I t 'ti-

3. 2 HARDWARE/FIRMWARE COST SUMMARY

The comparative costs associated with the evaluation results shown in

tables 4, 5 and 6 are presented in table i. Material costs are

expressed in 1977 dollars for modifying one computer. Non-recurring costs

are expressed in labor hours and include:

a. electrical and micro-code design

b. design verification

c. design documentation

d. printed wiring board artwork changes

Recurring costs are similarly expressed in labor hours and include:

a. assembly and test

b. matrix plate wiring changes

c. system functional verification

d. system acceptance test

3. 3 DETAILED DOCUMENTATION

The 20 new instructions for the DAIS machine are listed in table 8.

This table also details which micro-code routines are required in the CPU,

%.-C, and EAU, The instruction description, flow charts and timing dia-

grams for each of the 20 instructions follow table 8.

42

• "•,.'--'-'muu iil 11•llll- Ini [lin i n 11 •...ll.........nn.iu.--.--,_ __.-=-_.- ,,

TA B LE ,'

CosT S UM LA RY

COSTS ASSOCIATED WITH TABLE 4

Parts Cost (S) Non-Recurring Recurring
Labor (HR) Labor (HR)

1 PSH 4950 1184 109

2 POP 4950 1184 109

"3. LPSW 1300 473 55

COSTS ASSOCIATED WITH TABLE 5

Parts Cost (S) Non-Recurrino Recur ina
Labor (HR) Labor (HR)

I Regindr 665 205 16

2 Reg Indr 665 50 16
w/Auto Inc

3 1mied Short 1300 430 40

4 7mied Short 800 206
710 750 206

5 Jmp Cond ,710 800 206
IC Rel 710 750 206

6 Jmp Sub 710 800 206
IC Rel 710 750 206

7 IC Rel Short 710 790 206

8 6-Bit Base Rel 710 850 206
710 760 206

9 Base Rel Short 710 1000 206

10 Immed Long "710 870 206

77-0819-TA.12

43

11 ylk11M W,0

nN Ii %'I) ' 1 t "I nI ILu Lto (C tot

.4) (.1 ~ U) U) LOI I W

al LL' x cr c
Lt., LI. Lk. LL U.r C)O < a: (n (n (

LIIn

('n V.) VX V))<X

(r.. x 0 0) nOO (

1-4 00tt

MI T.zL 1U U-: X ~ tQ 0 .cr cr Xr co ~ u crc

0 C0 -0 U 0 0 -C

Cl) cr .2< S?0- o 0

0) I).3 (/) 0 0 0 .. < c

U-U sLI I- L- IL >- z 0 ~ 0 0

o. J L LU L U V) 0: V)(d nV
U-- U-9 ~ .

_ 5@

44~

MNEMONIC: OP CODE: 8B

SHORT NAME: push onto stack

FORMAT: PSH N, RA

I1 0 0 O 1 .. N R•a,
16 9 8 5 4

DESCRIPTION: The contents of registers R through R are pushed onto__ a (a+N)

a stack in memory using R15 as the stack pointer. When completed, RI5

is incremented by N+l.

U N=0, then on2L R is pushed onto the stack.

REGISTERS AFFECTED: RI5

TIMING: (3. 0 +. 6N) usec

45

PIH I CPU

M.C. £1,1
CPU -* PSHI YES
MRDY= I PSH1

IR?~ 2R7 7

1R15 + 1) -"R15

NOP

DO - EAR 4 3

EAR - MBUS<

MEMRO -0YE

EAR -~ MBtJS
MEMRD - 0
MEX$S 1

NO P

MRDY v 14

77.08 19VA14

Figure 5 , PSH Instruction

46

-* I

600

-6-

M

, I IiI I 1 4"')

U.

U V) >

47

MNEMONIC: POP OP CODE: 9B

SHORT NAME: pop from stack

FORMAT: pop N, RRA

1.0.0.1 1 0 1 N .

16 9 8 54 1

DESCRIPTION: Register Ra through R(a.N) are loaded sequentially from the

stack in memory using Ri5 as the stack pointer. When completed, R15 is

loaded with (R15-N-I). The CS register is set for each word transferred.

Lf N=0, then only R will be loaded.
a

REGISTERS AFFECTED: R a through R(aN)' RL5, CS

TIMING: (3. 0 + 1. 6N) Asec

48

MC CPU

POPPO

CPU-. POP [0 RY1

PROCRO1

III OI7 2 PC PI
PRROC-Ol =8 RON - SMEX f

PO OPS

EAR BUSTPOP

MEXQU -0 ItESý

IFYE
POP8 O ý

PRSWR -. 1 OR2
LESW -~ 0O

P0GP P9P

POP7 MCTTC 7 7-8 BO -V A- -15S

Figure 0, PPIstut

0OOOUT 0 49

0 to -

-~ w 0

a.

Ln LO

LLf

-- 41P
CN

-*50

IKNIiMONIC : OP CODE;

SHORt' NAME • r,', •u word..

FORMAT: ., PS W A -TDR nlionindoxed
L.,PS A 1)DI• H. X indexod

o) I 1 I! S S r.~ 1TTT 1 T i.1
16 9 ,8 5 4 16

DESCRIPT'ION: The curt-nli thratO~~l ~oiall itaus words av zoplaceid by throo

soquontial mernory wards rocuttd 4t the Offoctive address.

ThLs instructton is ustid for contu•t switchinI, and as a return £rom Inter-

rupt.

REGISTERS AFFECTED: IC, CS

TIMING: 4. 4 psec

51

The three PSW words would be of the format below:

[,NTFURUPT MASK PSW1

16 1
4 Lowest Level

Highest Level (1 - ON, 0 - OFF)
(1 ON, 0 , OFF)

N 0 2 Rs M I X -x PSW2

INTERRUPT (1 ON)

MODE (I - EXEC, 0 - USER)

REG, SET

ZERO FLAG

OVERFLOW FLAG

NEGATIVE FLAG

IC AT TIME OF INTERRUPT PSW3

. 16

77-0819-VA.16

Figure 9 LPSW Words

52

MC CPU

LPSW' CLPSW

CT EAR -o.MORI

LPSWI CLPSW1 '400NS
KF4N~ 0 CPU*C L PSW

01 - 1 -*DO
LSW2

MORI -01
00 ----- EAR

CPW

I LPSW3 MO

MORI - 1 L < --
DO-0 EA ADUR FOR PSW2 & .3 YEEMORI - MBUS ADOR FOR PSWI

LPSW401
0

MORI - MBUS 0 -- MS E
PROCRO 1 CE

OBLEN =I

LPSW5

MOEN -0

ODDOUr 0

LPSW6

MSW -'MOR2

LS -MORI
MOEN z0 PSWI - MORI
MROY=,

I LPSW7

MORI Of D

LPSW8

MORI 01 D
EAR -~MOUS ADOR for PSW 283
PROCRD I

77-0819-VA.-17I

Figure 10. LPSWV Instruction

53

crC

-e-

---O

- -- 41P

crc

-. 0 -

S 54

MNEMONIC: FAR OP CODE: AS

SHORT NAME: floating point ADD, register-to-register

FORMAT: FAR RI, R2

i 0 1 0 1 0 0R2

DESCRIPTION: fhe floating point number in registers RZ and R2 plus one is

a dded to the content of registers Ri and RI plus one. The conditions status,

CS, is set based on the floating point result in registers Rl and RI + I and

overflow. Overflow is defined as exponent overflow or underflow during the

operation. Upon overflow or underflow a floating point zero, 00000080, is

the result, RI and R2 nmust be even.

REGISTERS AFFECTED: Rl, RI 1, CS

TIMING:
2

55

TYPE - PS IREGISTER TO REGISTER SPECIALI

• 407
U TPRS

EARSEL - DO
IVJMP = 0
JADO RSI
MCROY =1

S TPRS2

CPU: RSI1762) EARSEL 00

65

EAR - MORi
DO - EAR

CPU: RS2(763) MCRDY I R21 - MORI
EARSEL =0

EAR
EAR MOR2
LDEAR R21 - MOR2

77-08 19-VA-18

Figure 12 , TYPE - PS (Register to Register Special)

56

C-4

CL,

o LO

I-

C',N

-1

a.

C-4
'AX

LO

XAKLL Td
444 - (Ir

'A *-~N =D

al~ o.-

57

W ' IA~ I N O 1h A 0 0 III 41 'A. E A' - 11

VA AA

f A~ A 0

VA A i

CRY GCPE N a I

IFI

Figur 146 .A 147 FAB 1ci

MORI 01 0 1 - -40w Ai58

FLOATING POINT ADO

FA A7

-Ft 421 rA~l~l--AISE.)

-!Mo. U not 32

C-fA2 4221

-. FA 102,

-
Ill

Figure3 CFA 152 YAESsrcto

ZEO9

MNEMONIC: FSR OP CODE: B8

SHORT NAME, floating subtract, register-to-register

FORMAT: FSR RI, R2

- ° -- I
1 0 1 1 1 0 0 0 R1 R2

DESCRIPTION: The floating point number in register R2 and R2 +I is sub-

tracted from the floating point number in register.Rl and register R1+ 1.

The difference remains in registers RI and R1+ 1. The condition status,

CS, is set based on the floating point result in registers R1 and R1+ I and

overfLow. Overflow is defined as exponent overflow or underflow during

the operation. Upon overflow or underflow a floating point zero, 00000080,

is the result. Rl and R2 musk be even.

REGISTERS AFFECTED: R1, RI+t, CS

TIMING: 4.2

60

TYPE - PS (REGISTER TO REGISTER SPECIAL)

(407

TPRS1

EARSEL - 00
IVJMP =0

JADO = RSI
MCRDY =

, ... •, 410S TPRS2

CPU: RS1(762) [EARSEL 00

65
TPRS3

EAR - MORI00 - EAR
CPU: kS2(763) MCROY 1 R2j - MORI

EARSEL W

"$66
, TR 4

I DO - EAR
! EAR - MOR2If-l q , ,, R2j ----. MOR2

OLIDLE

77-0819-VA-18

Figure 16 T YPE - PS (Register to Register Special)

61

(NN

a:L
a:

0. 4

0j

L L
ca

uoI

a: c~ ~ a

F LOA TING PO INT SUBTR ACT, Ri 'I ~ -ME M (EA. EA -! I(,:)

TYPE OP CODE F

FS B7
FSR 68
FSI B9 F lA 521

MORI - ~01

FSO 17 522 17

MORI-. 01MR2--0
DI-R 0000- ~0

FYgE r 008 - IS NxsrtOn

F33 167FS2 63

MOR 01 -. '

o - ;i-I .i
- I.! .1
.� 0�� �I�II
- �;.4

:LJ
LI I

A- I

00 I
0 -, -� 0

-- U
� -. � -

� 0 -. 0

0 C

00 C

� I-, �. U. -
0 � C 0fI� � �

- .2

'*1

0 � 0 - �
-- � �I;I
;;�� � - -� LJ

64

- � - - -�---- -

MNEMONIC: FMR OP CODE: C8

SHORT NAME: floating multiply, register-to-register

FORMAT: FMp R1, R2

1 0 1 00 1 0 R I R 7

DESCRIPTION: The floating point number in registers R2 and R2 + I is multi-

plied by the floating point number in registers R1 and RI + 1. The floating

point result is retained in registers RI and Rt+l. The condition status, CS,

is set based on the floating point result in registers R1 and R1+ I and over-

flow, Overflow is defined as exponent overflow or underflow during the

operation. Upon overflow or underflow a floating point zero. 00000080, is

the result. Ri and R2 must be even.

REGISTERS AFFECTED: Rl, RI + I, CS

TIMING: 5.6

65

TYPE - PS (REGISTER TO REGISTER SPECIAL)

[R~L - DO
IVJMP 0
JAOO- RSI
MCROY -1

CPU: R31(762) [EARSEL DO
65

LTPRS3
EAR - MORI
DO - EAR

CPU: RS2(763) MCRDY 1 R2j I MORI
EARSEL ,

"1 '- EAR 1
EAR -* MOR2
LDEAR *R2j 0MOR2

77-0819-VA-1h

Figure 20 . TYPE - PS (Register to Register Special)

66

xx

C-

V) c

-j

LU.

1

uN w(X
x.N(1

uj u

67

FLOATING POINT MULTIPLY: (131. R11) .(MEMORY, MEMORY *1) 1111, RIII

FM, FMI

TYPE OP CODE FMI 531

FM C7R1 1 DO 0 BUS
F MR C8
FMI C9

FM3 216

MORI ni1

M IR BU-01BS

01 BUS-.4 00 BUS1

Figur 220.F ?Intuto

MORI -01

0re

>.I

aW

a,,

CLC

0w

Iz cc
cr n u

71U

(cc

~. 4 cg ~~--. .. -o
- LL LA.

69

MNEMONIC: FDR OP CODE: D8

SHORT NAME: floating divide, register- to-register

FORMAT: FDR Ri, R2

S o o1 0 0

DESCRIPTION: The floating point number in registers Rl and Rl+ I is divided

by the floating point number in registers R2 and R2 +l. The floating point

quotient is retained in registers R1 and Rl+ 1. The condition status, CS,

is set based on the floating point result in registers RI and RI +I and over-

flow. Overflow is defined as exponent overflow or underflow during the

operation. Upon overflow or underflow a floating point zero, 00000080, is

the result. RI and RZ must be even.

REGISTERS AFFECTED: RI, Rt+l, CS

TIMING: 0

70

TYPE - PS (REGISTER TO REGISTER SPECIAL)

7TPRSS. .• 407-

U TPRSI

SEARS___EL 0 0D
IVJMP = 0
JADO = RSI
MCRDY = I

S 410 '-

$ TPRS2

CPU: RS1(762) EARSEL 00

S 65
•_TPRS31

EAR - MOR1
00 -* EAR

CPU: RS2(763(MCRDY = I R2j MORI
LARSEL a

66
TRPS4

DO EAR
EAR - MOR2
LDEAR R2j - MOR2

(OILE D

77-0819-VA- 18

Figure 2ý rYPE - PS (Registi-r to Register Special)

71.

rr 14

II4

72

FLOATING POINT DIVIDE. (Rli, All)"" (MEMORY, MEMORY .1 -) (Rli, RljI

TYý PE OP CODE

FO 07 FO

FOR 08

F0I 09 FO1 541

Ali 00O

F 00

F03 24,

MOR2 - I 1
MS OPERANCj

oI - 00 J
F04 T 247

M091 - 01
LS OPERANO

01 - 00

FR5 01 250
R 11 - 031 -4 All

MORI-LS OPERANO
FLGSEL- EAU
VRYCPEN , I

221

P M6

77.08 I9VA,2

Figure ' . FDF' Instruction

73

74~

MNEMONIC: OP CODE: FS

SHORT NAME: floating compare, register-to- register

FORMAT: FCR RI, R2

I t I 100 0R12

DESCRIPTION: The floating point number in registers RI and R1 +I is com-

pared to the floating point number in registers RZ and R2+ 1. If RI<R2

then the condition status, CS, is set to I (less than). IE R1 = RZ then CS is

set to 2 (equal to). 1f RI >RZ then CS is set to 4 (greater than). No reg-

isters are changed. R1 and R2 must be even.

REGISTERS AFFECTED: Cs

75

TYPE - PS REGISTER TO REGISTER SPECIAL)

U, •P...TP ,RS40?7
U TP RSI

EARSEL - 00
IVJP 0a
JADO RSI
MCROY I

S TPRS2

CPU: RS1(762) EARSEL 00

,• 65
_. _4 TIPRS3

EAR P MORI
00 - EARCPU: RS2(763) MCROY-= I R21 - MORI
EARSEL Cb

TRP,
-D, EAR

EAR - MOR2
LDEAR R21 - MOR2

::IOLE

77-0819-VA..18

Figure 28 . TYPE - PS (Register to Register Special)

76

-AJ

(NN

w0

CN (dL0 .

I- c c

VU.

cr0'7
V)

CIC;

V)N

a.:

ca:

u
L

07

1.

FLOATING POINT COMPARE: RI (i, j) - MEMORY (EA, EA + 1) - C.S.

TYPE OP CODE

FC FT FCIf 560
FCI F8 MORI--01

DI- Rlj"- O

lC2- 561

MOR1-* DI

DI - RIj-' DO

OR.0 1 9-GVAE

Figure 30 . OR L'trcto

FLGSEL 8 EAU
CRVCPEN - I

aooo

••F UNLESS OVFLY ES

.
E X P(R

I I> E
P

'C 267NO
" YESL

f_ý CRSAV -l 7 OVFL

MC R 1 -0
R .00MOR2-* O fI FLGcPENx 1

FLGCPEN- 1SCPURDY 01
rPURDY a0I

R REG LDOD - 0
nm m -o'L MD T o -o 0M CT O

77.0819-VA.21

Figure 30 .FCR Lnstruction

78

MNEMONIC: 1 OP CODE: co

SHORT NAME: single precision multiply

FORMAT: M RI, ADDR nonindexed

M RI, ADDR, RX indexed

Iii. 0 0 0 0 0 0 RI RX ADDRESS FIELD

DESCRIPTION: The memory operand is multiplied by the content of register

RI. The high order part of the product is retained in register RI: the

lower order part of the product is retained in register Rl+l.

The condition status, CS, is set based on the result. If RX is 0, then the

16-bit address field is used as a memory address to obtain the memory

operand. Ef RX is nonzero, then the content of register RX is added to the

16-bit address field and the resulting sum is used as a memory address to

obtain the memory operand,

REGISTERS AFFECTED: RI, Rl+I, CS

TIMING: 4.0

79

TYPE - 0 (DIRECT MEM. ACCESS INSTRUCTION)

U TPDXI

OBUS- EAR 414
CPU: X+AF EAR - DI

EARSEL 0

U * TPOX2

DO- EAR 415
OMEM - MOR2 Q8US-" EAR

BMPQO= 1 FOR TPD

MCRDY 1

C IDLE

TYPE - DE (DIRECT MEM. ACCESS, EARLY CPU RELEASE)

TPDEX

U TPDEX
QBUS-* EAR 416

CPU: X+AF EAR-0DI
EARLY EARSEL -D0
RELEASE MCRDY a I

TPDX2

77-0819-VA-28

Figure 31. TYPE - D (Direct Memory Accesa Instructio.i)

80

LU 0.

M.

- 0 -0

a(-

0 UL.

ox

(NU-x

I r- wk rc

Lr u U 2 0

- j U 2x

'CuJ 81

SINGLE PRECISION MULTIPLY: Rli *MEMORY -Rli

TYPE OP CODE

M CO
MI C2
MB 10,11,12,13
MIM C3

Ml 525

M2 203

MOR? 01-~D

D__M4

77-0819-VA-29

Figure 33 M Instruction

82

FRACTIONAL MULTIPLY

M CU
MI C2

MIM C3
MR 10.11,12.13

M

C-MI 525
0 A

MI HSRCTR
C-M2 203

MOCT+F 3 MtCt

-MO 08
(A+6 - MQ1) (I R) - -A

MQ L l IR) MO
MOCT÷I MOCT

NO

l-M1 •YES ,•.

(A-8 - MG 1) -"'I A-1O

O-M2

IRESET OVFL ROY

C-OM5 211

C-OM 207

774-819-VA-30

Figure 34, . Mv Instruction

83

MNEMONIC: ',',v R OP CODE: Cl

SHORT NAME: single precision multiply, register -to-register

FORMAT: MR RI, R2

ji1 0 0 0 0 0 1

DESCRIPTION: The content of register R2 is multiplied by the content of

register Rl and the product is retained in register RI and RI+ I. The con-

dition status, CS, is set based on the result.

REGISTERS AFFECTED: R1, RI+l, CS

TIMING:

84

TYPE - R (REGISTER TO REGISTER INSTRUCTION)

U TPR 406

MCROY = 1

STi 1

ST2 = I

LOMCAD = I

WT4RCY 0

I OLE
77.0819-VA-31

Figure 3; . -PE - R (Register to Regizter Instruction)

85

U.

0.

x

w

U,

w

x

-J

_

0

w

=

0

C-)
U-

0.

KY>
I

-JLU 0-Jw

U-

-

U.

0 K�C-)

U.

C-

-
LU

LU 0-J

C-J

LU

0

C-

-

-

C-

LU

-I

LU

LU

<0<

00�

� zC- :-.

O
C

�0
�

�
-

-�

C-

86
-- U

SINGLE PRECISION MULTIPLY: REGISTER TO REGISTER: Rli - R2i Rli

TYPE OP CODE
MR

MR Cl 15

MR1 526

MR2 1 204

R2i -* 00

DM4

77-08 19-VA-32

Figure 37. NMR Instruction

87

FRACTIONAL MULTIPLY,

REGISTER TO REGISTER

MR MR C2

C-MR1 526

Ml-• HSRCTR

C-MR2 1l 204,

R2i - MQL

MOCT + 1 - MOCT

O-MO 01

1A + (AB Mnl) (IR)-- A
15 MOL (1R) - MOL

MOCT - 1 - MOCT

NO
MOCTTC?

YES

S(- ' Q|-'-M1 , 0'

(A - B* MO?) -A

ROY

O-M2 1

RESET OVFL

ROY

C-OMR5 215

SAL- Al

C-OMG 207

AuAl

CND
77.-08,9VA.33

Figure 38 I MR Lnstruction

88

MNEMONIC: MI OP CODE: C?

SHORT NAME: single precision multiply indirect

FORMAT: MI Ri, ADDR nonindexed
M1 RI, ADDR, RX indexed

1- .000010 R. o ADDRESS FLELD

DESCRIPTION: The memory operand is multiplied by the content of register

RI. The product is retained in register RI and RI+ I. The condition status,

CS, is set based on the result.

If RX is 0, then the 16-bit address field is used to fetch a memory address.

'This memory address is used to obtain the memory operand. If RX is

nonzero, then the 16-bit address field is used to fetch an address. The

content of register RX is added to the fetched address and the resulting sum

is used as a memory address to obtain the memory operand.

REGISTERS AFFECTED: RI, CS

TIMING: .5.0

89

TYPE - I (INDIRECT MEM. ACCESS INSTRUCTION)

C TPIX XP

:T14~l27 EPI 1 I4 2 3

,US-x EAR OBUS -. EAR

INDIRECT AD OMEM.-# MOR2 OMEM- MOR2

DIRECT AD IVJM- "-"P 0 x 0

JADO - BUS2X JADD - BUS2

MCRDY= 1 MCRDY 1

S L TPIX2 430 S JI TP12 424

CPU: BUS2X MOR2+RX"- DO MOR2 00 CPU:BUSS
EARSEL 0 0 EARSEL - 00

'+" ,,, 415

TYPE - IE (INDIRECT MEM. ACCESS, EARLY CPU RELEASE)

TPIX TPIE

U TPIEX1 431 TPE

SAME AS SAME AS

TPIXI T PI

S, I TPIEX2 432 S I TPIE2 426

MDR2 + RX - 00 EARLY MOR2 -'01
EARSEL - DO RELEASE EARSEL x DO
MCRDY - I MCRDY x I

770819.VA.34

Figure 39 . Type - I (Indirect Memory Access Instruction)

90

CL

N Io
CL

x 0d

-5 c-

9 91

SINGLE PRECISION MULTIPLY: Rli "MEMORY Rlt

TYPE OP CODE

M CO
MI C2
Ms 10,11,12,13
MIM C3

'=M
Ml 525
Ali- DO

M2 203

MO R2 oD1
DI DO

77-0819-VA-29

Figure 41 MI Instruction

92

FRACTIONAL MULTIPLY

M M CO

C MI C2

C-Mi . 525 MIM C3

0 - A 8u M8 10,11,12,13
Rh i Bu

Ml HSRCTR

C-M2 , 203

MEM- MQL

MOCT + 1 MOCT

0/
O-MO 0, O

-(A +i -, M -(1 -R - A ~-

S[MOCT÷ + OCT

S~~MOCTTC?

YES

I-M1 O'

O-M2 4

FRESET oOVFL

C-OM$. 211

AL - Rli I

II
77.0819.VA.35

Figure '-2 MI Instruction

93

MNEMONIC: D OPCODE: DO

SHORT NAME: single precision divide

FORMAT: D RI, ADDR nonindexed
D R1, ADDR, RX indexed

I ! i 0 1 0 0 0 101 RI1 RX [___ADDRESS FIELD
16 1 9 81 5 41111 16 1

DESCRIPTION: The content of register R1 and RI+1 is divided by the memory

operand. The quotient is retained in register R1 and the remainder is

retained in register RI + i. Overflow occurs if the magnitude of the num-

ber in storage is equal or less than the magnitude in register Rl.

The condition status, CS, is set based on the result in register RI and

overflow. if RX is 0, then the 16-bit address field is used as a memory

address to obtain the memory operand. If RX is nonzero, then the content

of register RX is added to the 16-bit address field and the resulting sum is

used as a memory address to obtain the memory operand. RI must be even.

REGISTERS AFFECTED: RI, Ri + 1, CS

TIMING: 4. 2

94

-

TYPE - 0 (DIRECT MEM. ACCESS INSTRUCTION)

U J TPDXI

U TP XTPOMEC
QBUS - EAR 414

CPU: X + AF EAR - 01

EARSEL - 0

U * TPOX2

00 "- EAR 415
OMEM"- MOR2 QBUS -•EAR

BMPO. = I FOR TPD

MCRDY =I

77..8.1,.VA .,

Figure P D~3 yE -D (D irect ME.ACSEAiRLYCP RLAccE)sIsrcin

U • TP9EX
QBUS- EAR 416

CPU: X +÷AF EAR -"DI
EARLY EARSEL - 00
RELEASE MCRDY = I

77-0819-VA,28

Figure "3 . Type -D (Direct N-femnory Access Instruction)

9::5

NI

x 4:

C- 0 0

0 IN.

o

U 96

SINGLE PRECISiON DIVIDE, REGISTER TO MEMORY: (Rli, RIj) 4 MEMORY - (RHi, Rl1)

(IN EAU) (Q, R)

TYPE OP CODE

O 0DO 1l 535

01 02

OB 14, 15, 16, 17 8RI - DO

DIM 03 0

02,, • , 233

Rli- DO

03 1 234

MOR2 - I
! MOR2"• '

DI - DO

06 344

YES

05 345

0I - R Ii

06 346

DZEROEN 4 0
01 - RI,

Sample EAU FLAGS
CPURDY = I
MOCTLOO = 0
REGLODO 0

77.0819-VA-36

Figure -. D L-structLon

97

0 00
001 02

DIM 03
C-01 535 08 14, 15, 16, 17

RI1 - MOL

C-02 1 233

R It -MQU +: If Mal -

DO- HSRCTR -if Mal -

C-03 234 Ou3T w1P32-832)

MU -A

MEM B

0-00 20'

MOI (W~ - MO

OBIT -~ MO I
MDCT+1 - MOOT

Simple 46 Lntrutio

OBT- M*.. wrl~

-C+I-M C

MNEMONIC: DR OPCODE: Dl

SHORT NAME: single precision divide, register-to-register

FORMAT: DR RI, RZ

4i I 0 0 i(RI R2,

DESCRIPTION: The content of registers RI and R1 + I is divided by the con-

tent of register R2. The quotient is retained in register RI and the

remainder is retained in register RI plus one. The condition status, CS,

is set based on the result in register RI and overflow. RI must be even.

REGISTERS AFFECTED: RI, RI+l, CS

TIMING: 4. 0

99

TYPE - R (REGISTER TO REGISTER INSTRUCTION)

TP R

U (f TPR 406

MCROY - 1
ST1 a I

ST2 x1
LDMCAD - 1
WT4RDY v 0

77-0819-VA-31

Figure 47 Type - R (Register to Register Instruction)

100

wq

0

L-

X

o.

CLU

-IL

S- cc

I bi)
C I>

> <

L. -- X :) U

: 0 z b6L C Z

o0

SINGLE PRECISION DIVIDE, REGISTER TO REGISTER: (Ri, Rlj)--R2i- (Rli, Rlj)
Q,R

TYPE OP CODE OR

OR 011

OR 4j 536

Rlj- DO }

DR2 I 235

DR3 4236f R2i- 00

14
77-0819.VA.38

Figure 49 . DR Instruction

102

-1- i .! !!, "' •

FRACTIONAL DIVIDE, REGISTER TO REGISTER

OR

O

C - D 15 3 6 if M a l - O

RII -Ma L -uf Mal -

C..DRZ 235 GBIT (F32 =B32)

Rli Mau

DO - I4SRCTR

C-083 _I 236

MGI - A

0-DO 20'

F xA
MO (I L) MQ
OBIT - MQl

MDCT+1- MOCT C-D4 344

1-01 20'ROY

(I~ L) -
AO

CIle 346

aL-R

EN

Q701-A3

Fiur 5 D LstucVo

103

MNEMONIC: DI OP CODE: D2

SHORT NAME: single precision divide indirect

FORMAT: DI R1, ADDR nonindexed

DI R1, ADDR, RX indexed

I 1~ 0 1 0 0 1 '0 P RX ADDRE SS.FELD

DESCRIPTION: The content of register RI and RI + 1 is divided by the memory

operand, The quotient is retained in register RI and the remainder is

retained in register R1 + 1. The condition status, CS, is set based on the

result in register RI and overflow. R1 must be evem

11 RX is 0, then the 16-bit address field is used to fetch memory address.

This memory address is used to obtain the memory operand. if RX is

nonzero, then the 16-bit address field is used to fetch an address. The

content of register RX is added to the fetched address and the resulting

is used as a memory address to obtain the memory operand.

REGISTERS AFFECTED: R1, RI + 1, CS

TIMING: 5.2

104

TYPE -I (INDIRECT MEM. ACCESS INSTRUCTION)

= TPIX
C TPIE

U TPIX1 TP42 rpii 423

O8US- EAR OBUSE- EAR

INDIRECT AD OMEM -MOR2 OMEM - MO R2
DIRECT AD IVJMP = IVJMP z

JADO -BUS2X JADDO BUS2

.IMCRDY = I MCRDY = 1

CPU: BUS2X MOR2 + RX -003OR2-0 CPU: BUSS

EASE ,. 0,, EA L=0

"•1I• 415

STPox2

TYPE - IE (INDIRECT MEM. ACCESS, EARLY CPU RELEASE)

TPIEX TI

UTPIEX1 431 TPl

SAME AS SAME AS

1051

TPIX1 TP11

S PE2432 S TPIE2 426

MOR + RX - DO 1 EARLY MOR2 - 01
EARSEL 00 RELEASEý EARSEL DO0

77-081 9-VA-34

Figure 51 Type -I (Indirect Memory Access Instruction)

105

4L IN

x

4 IN.

M NC4

xx

~Lfx

U.4 x

4 w x
-~u

SINGLE PRECISION DIVIOE, REGISTER TO MEMORY: (Rli, Rij) ÷ MEMORY- (RHi, RI1)
(IN EAU) (0, R)

TYPE OP CODE 0

0 00

01 D2 DIT 535

DO 14, 15, 16, 17

DIM 03 1

02 1 233

RAli DO

03 1 234

MOR2-- 0I
DI -I 0

Y06 344

NOA

EAjURDY
= 1

YES

05 3451

DI Ali

D06 346
DZEROEN 0

I -- Rli

SAMPLE EAU FLAGS
CPURDY 1
MOCTLOD - 0
REGLOD - 0

77.0819-VA 40

Figure 53 . DI Instruction

107

0 D0 02

DIM 03
C .-01 535 08 14, 15, 16. 17

ARlj MOL

C-D2 1 233

Rli - MQ : +ifMala0
DO- HSRCTR -ifM1.1

C-03 1 234
MQ-'A

MEM - BU

0-00 20'

MO (ILU - MG
OBIT - MQ1
MDCT- - MOCT

1-D1 F 20'

(A. +B) (11.) -*A
Sample OIVOVFL
MG H L)-- MO
OBIT - M1C
MDCTI1- MOCT

'•FYS , C-D '• 344

MCI (1 L) ""MO L" 1
HBIT-" MalC-514

S. ... ROY •- - ' - - -

77.o819.vA41

Figure 54 . DI Instruction

108

.~..........- MOC

MNEMONIC: DABS OPCODE: AC

SHORT NAME: double precision absolute value register to register

FORMAT: DABS RI, R2
DABS RI

l0 1 0110 0 I R 2

DESCRIPTION: Y1 the sign bit of register RZ is a one, then double precision

negate register R2, R2 + 1 and place result in RI and RI + I, otherwise

place R2, R2 + I in RI, RI+ 1, respectively. RI and R2 must be even. Rl

may equal R2.

REGISTERS AFFECTED: RI, RI + 1, CS

TIMING: 1.6

109

TYPE - A (REGISTER TO REGISTER INSTRUCTION)

U . TPR 406

MCRDY - 1

STI 1
ST2 - 1

LOMCAD = 1
WT4RDY - 0

CIDLE
77.08 19-VA-31

Figure 55 Type - R (Register to Register Lnstruction)

110

UL

wi

-J2

6< U2U

DOUBLE PRECISION ABSOLUTE VALUE: R20i, I~I Rl~i, j)

TA UO OO ABS A

D A SA
D A B S I 5 1 3

R~i -~ 00
FLGSEL- 3
CRY-CPENI

RZ-R~ -- -Rl-RI

~~LGCPENPE 1ILCPN

CNOD 11, E

MDCTLO 4 54NEG1 456

R21LO 0i -R2i- Rlj

UZEROEN IZEROCENI
FLGCPN I FLGCPEN' I

CPCPURDY 1
Mb-CTLb - 0DCTLOO 45
R FGMO 0 REGLOD 0l

77EOE -0 19VA2

-ELO - 0..

MNEMONIC: DNEG OP CODE: BC

SHORT NAME: negate double precision register

FORMAT: DNEG RI, R2
DNEG RI

1 0, 1.1 .1 1 0 RI RI

DESCRIPTION: The content of register R2 and Register R2 + I is negated.

The result, the negative of the original double precision number, is placed

in RI and RI + 1. R2 may be equal to Ri. The condition status, CS, is set

based on the double precision result in registers Rl and RI + I and overflow.

RI and R2 must be even.

REGISTERS AFFECTED: RI, RI + 1, CS

TIMING: 1. 4

113

pl m " ""- '' •'W * '" . . . --•- , , '= . .

TYPE - R (REGISTER TO REGISTER INSTRUCTION)

TPR

U (T TPR 406

MCRDY - 1

STI w I
ST2 - i
LOMCAD w 1
WT4ROY * 0

CIDLE
77.08 19-VA-31

Figure 58 Type - R (Register to Register Instruction)

114

S.. .."• ---• -.. . . •'• l" a I 1lI - -l l i l ii . .[• .•- - - : -

L-

LA.

C: C)

w- w

44t

DOUBLE NEGATC. - (R2 0i, j)) - RI 0I, 1)

TYPE opcg

UNEG BC OE

ONEG IK 465

FLGO PEN - I SW
CRYCPEN--

ONEG2 1 456

-R2i -1 RHi

OZERO -1 MSW
FLGCPEN I

CPURDY 1
MOCTLOO - 0

ReGLOO - 0

77-08 19-VA-43

Figure 60 DNEG Distruction

116

MNEMONIC: SRC OP CODE: 64

SHORT NAME: shift right cyclic

FORMAT: SRC R2, N

0 10 0 1 0 1E N-Ij R1So o ... o oI

DESCRIPTION: The content of register R2 is shifted right cyclically N posi-

tions. The field N-1 being zero represents a shift of I position. The field

N-I being 15 represents a shift of 16 positions. Bits shifted out of the least

signi-ficant bit position enter the sign position. No bits are lost. The

condition status, CS, is set based on the result in register R2. R2 may be

any general register. The assembler subtracts I from the programs value

of N and places N-l in the 4 bit field,

Result in Register Resulting Condition Status

R2 Bits Hex JC Mnemonic

0 0010 2 EZ

sign bit = l 0001 1 LZ

otherwise 0100 4 GZ

REGISTERS AFFECTED: R2, CS

TIMING: 1.4 + 0. 4 per positio

117

-. *-- -- ~-nr~rW---4

TYPE - R (REGISTER TO REGISTER INSTRUCTION)

TPR

U TPR 406

MCROY = 1

STI = 1
ST2 -1
LDMCAO = 1
WT4RDY - 0

IOLE

77-08 19-VA-31

Figure 61 Type - R (Register to Register instruction)

118

0- -

C)) X C

xx

U L L

-JJ

0rLL
cr u ~u < 2

ccLL 0 2 5 C a

119

SHIFT RIGHT: R21 R2i (SHIFTED RIGHT N I TIMES)

TYPE OP CODE

SRL 61 423 QFID
SRA 62 425

SRC 64 427 SRL I

SRA I
SAC 1I_____

CMJAORI ,, I
s~ Wu 1

MOCTEN I 1
SH RT - I
R21i(SR)• - U

MDCTTC 17

-y ES

SR X2 21

R2i -I 00
FLGCPEN - 1
CPURDY - I
REGLO0 a 0
MDCTLO[: - 0

' 77,0819-VA44

Figure 63, SRC Lnstr'uction

120

MNEMONIC: - SM OP CODE: 65

SHORT NAME: double shift left logical

FORMAT: DSLI. R2, N

0 1 i 0 0 1 0 1 N-1 RZ
1111111t III,, I I

DESCRIPTION: The content of registers R2 and R2 + I are shifted left logical

N positions. The field N-1 being zero represents a sh~it of 1 position. The

field N.- being 15 represents a shift of 16 positions. Zeros enter the least

significant position of register RZ + 1, Bits shifted out of the sign position

of register R, + I enter the least significant position of register RZ. Bits

shifted out of the sign position of register RZ are lost. The condition

status, CS, is set based on the double precision result in registers R2 and

R2+1. RZ must be even.

Result in Registers Resulting Condition Status

R2, R2+1 Bits Hex JC Mnemonic

both zero 0010 2 EZ
2

sign bit of R = L 0001 1 LZ

otherwise 0100 4 GZ

REGISTERS AFFECTED: R2, R2+1, CS

TIMING: 1. 8 +0. 4 per position

lZ1

__ " , = i iia.=1i • i-= i-- • :

TYPE - R (REGISTER TO REGISTER INSTRUCTION)

TP R

U (,TPR 406

MCROY = 1
STI = I

ST2 w1

LOMCAO = 1
WT4RDY =0

IDLE

77.0819-VA-31

Figure 64 Type - R (Register to Register Instruction)

122

-. --... .

LUU

CLC

LU U
-J C r

LW < x c

oi z

U 123

DOUBLE PRECISION SHIFT LEFT: R2i, R2j R2i, R2j (SHIFTED N+ I TIMES)

TYPE OP coDE

DSLL 65 DL

DSLC 68

DSLLI 430
DSLC1 434

R2j - 0

DSLL2 22

77.081 26VA4

Figure IME 66 DS1 Istut

MDTN=14

MNEMONIC: DSRA OP CODE: 67

SHORT NAME: double shift right arithmetic

FORMAT: DSRA R2, N

j01 ,i 00l I iI N-i R2

I .0 . 0 1 l '

DESCRIPTION: The content of registers R2 and R2+1 is shifted right arith-

metic N positions. The field N-1 being zero represents a shift of I

position. The field N-I being 15 represents a shift of 16 positions. The

sign position of register R2 is not shifted. The sign bit is copied into the

next position for each bit shifted. Bits leaving the least significant posi-

tion of register R2 enter the sign position of register R2+ 1. Bits leaving

the least significant position of register R2 + I are lost. The condition

status, CS, is set based on the double precision result in registers RZ and

R2 +1. R2 must be even.

Result in Registers Resulting Condition Status

R2, R2 +1 Bits Hex JC Mnemonic

both zero 0010 2 EZ

sign bit of R2 = 1 0001 1 LZ

otherwise 0100 4 GZ

REGISTERS AFFECTED: R2, R24+, CS

TIMING: 1. 8 +0. 4 per position

125

a. 1 ll ~ ~ l i l L = • l l a r i l l l l l 4 ' " - l l li m l i

TYPE - R (REGISTER TO REGISTER INSTRUCTION)

TP R

U (T TPR 406

MCRDY - I
STI - 1
ST2 • I
LOMCAD - 1
WT4RDY-O0

C WJLE

77-0819.VA.31

Figure 67 • Type - R (Register to Register Instruction)

126

L-J-

-j

IL

uj4

uj LU

> <
oi wc

L<U aj U4

127

..
tw

DOUBLE PRECISION SHIFT RIGHT, 1121. R2j '~R2i. R~j !SHIFTED N I TIMES)

DSRL 68 QjSRjX

OSHA 67

OSRC 69 SRl311OSRAII 441
OSRC1 435

R21 - a

OSRL.2 23
DSRA2 25
USRC2 27 I

JIMED -
MOCTEN 1-
SHRTw I
R2i(SR),OISR) - 132i, 0

NOMOCTTC aI ?

DSXX3 JYS31
0 - R2j
OZEROEN a 0
FLGCPEN a 1

DS X4 30

R2i -~ M~

OZEROEN 1
CPURDY I
FLGCPEN 1
MOCTIOD - 0
REGLOD - 0

#7708 19.VAAB

Figure 69. DSRA Lnstruction

128

... .. . -- - - - - ~ ~~.-... - .- .- - .~-

MNEMONICý S i- OP COUUt 69

SHORTNAME: duubla shlft right iyuli

FORMAT: 112, N

DESCRIPTION: The content of regkitevr 11 and FA R+÷ is dhlitud right cycli.

cally N positions. The field N-i be•ng aro reprvalnti A sihiLt of I poaition,

The field N-I being 15 repreaento a shi-t of 16 positiona, bita Wavtin tho

least sig•fnicant position of register P2 +1 entar the uvin position of rogi-

ster R12. Bits leaving the laat uignificant position of ,tigista, Ill entr tho

sign position of register R2 +1. No bits are lost. The cmndition status, CS,

is set based on the double precision result in registars I and i12 + 1. R•

must be even,

Result in Registers Resulting Condition Status

RZ, R2 + 1 31ts a Iex JC M416onic

both zero 0010 2 EZ

sign bit of RZ - 1 0001 1 LZ

otherwise 01,00 4 Gz

REGISTERS AFFECTED: R2, Rt2+1, CS

TIMING: 1. 8 +0, 4 per position

129

-- , , i = .i • li •-.--

TYPt Rq (MTISTER TO IT STRUCTION)

MCROY,

STI a 1
ST2 v I
LOMCAD I
WT4RDOY V0

77,08 t9,VA,3I

Fi'igure 70. R (Register to fRegiuter Instruction)

130

LI6

x

.00)

LM

CL

CC

LI-

U.

C) CL
0x

Lw M x ý LU

CC u <a 10
6-_ J

13

DOUBLE PRECISION SHIFT RIGHT: R2i, R2j -R2i, R2j (SHIFTED N 1 TIMES)

TYPE OP CODE

DSRL 66 OsR

OSRA 67

OSRC 69 DSRL1 431
OSRA11433
OSRC1 435

R2j-~ a

DSRL2 23
DSRA2 25
DSRC2 27 ____

JIMED -1
MOCTEN - 1
SHRT- 1
R2i(SR),Q(SR) - R2i, Q

NO
MDCTTC -1?

YES
DSXX3 YS31

0-+ R2j

DZEROEN0

FLGCPEN 1

DSXX4 30

R2i - R2i

OZEROEN-1
CPURDY 1
FLGCPEN - 1
MDCTLOD 0

REGLOD x0

77.0819-VA-46

Figure 72. DSCR Instructioni

132

SECTION IV

LOW-LEVEL MACHIE (LLM) DESIGN

4. 1 SCOPE OF DESIGN

The results of the software analysis performed during this contract

provided the natural foundation for a family of airborne digital computers.

With appropriate modifications, the present AYK-15 computer would

become the high performance member of the computer family. However,

the "low end" or lower performance members of the family were yet to be

defined. It is felt by both the Air Force and Westinghouse, that this "Low

Level" machine should be instruction set compatible with the higher mem-

bers of the family, while minimizing cost, power and volume: and still

using the same support software package and facilities.

To this end, an investigation and block level design was performed to

more fully define the characteristics of this Low-Level Machine (LLM).

This investigation resulted in a detailed study of machine architectures

suitable for the LLM implementation as well as an 1/O interconnect

definition (I-BUS) amenable to I/O expansion and CPU interconnection

(multiprocessing). The results of this investigation are part count.,

power and execution time estimates for the proposed LLM.

What follows is a summary of this investigation which concludes with a

block level description of the proposed LLM.

4. 2 APPLICATION BASE OF LLM

The first step in the LLM investigation was to define the type of problem

to be solved by the LLM. Since the computer is intended to be used in a

multitude of applications, an application base had to be defined for the new

machine in order to limit the scope of the investigation. With the help and

experience of AFAL, it was decided that the LLM should be used primarily

133

in a multicomputer avionics environment. It would, therefore, perform

pro-processing of sensor data prior to transmission of the data"to Other

processors within the system, Similarly, the LLM would perform any

post processing necesmary for actuator data. Figure 73 illustrate& a

desired application environment for the LLM,

Since the sensor/actuator requirements may be quits diverse from one

aircraft to another, the LI.M should also provide an efficient means of

interconnection of groups of LLM's to modularly expand the data handling

capability of the sensor/actuator system. Therefore, as the number of

sensors for the system Increases, additional LLM's may be added in a

modular building block fashion as illustrated in figure 73.

Using this application model as a starting point, past programs were

reviewed by AFAL and Westinghouse in order to establish the throughput

required for the LLM. With the throughput defined, a set of design goals

were then established for the LLM.

4. 3 DESIGN GOALS

A set of five design goals were established to provide guidelines for the

LLM design. They were:

a. Upward soft-ware campatability with DAIS (AYK-15)

b. 2. 5 to 5. 0 p•sec 16-bit fixed-point ADD

c. Universal memory interface

d. I-BUS 1/O design

e. Minimize volume and power

Software compatability with the modified AYK-15 machine, was given

the highest priority as a design goal in order to take advantage of the

software support developed for the AYK-15. However, wherever necess-

ary, instructions were omitted from the LLM to simplify its structure and

rrinirmize the parts count. As a result, the LLM became "upward cornpat-

able' with modified AYK-15 computer. (See Paragraph 2. 5. 3, Subset

for LLM).

134

- .- .. r

0d

0

0

00

0 (U

wQ 0)
z 5-4

- z

P-4

zU

_z z

135

After reviewing the application bases for the LLM, the goal of 2. 5

Psec was deemed suitable for a 16-bit fixed-point ADD execution time.

This design goal permitted a sizing of the control portion of the LLM to

provide a starting point for the design effort.

Because the LLM was intended to be used across a wide range of appli-

cations, it was felt that the ability to adapt the LLM to a particular

application by varying the memory organization was highly attractive.

Therefore, a generalized memory interface to allow for varying memory

speeds and technologies (IC or Core) was included as a design goal.

In order to provide for modular growth of the I/O and a link for multi-

processor application structures, the I-BUS approach developed by AFAL

(Final Report, Cont. No. F33615-74-C-1018) was adopted as the standard

1,/0 interface.

Finally, in order to reach a maximum application base it was deemed

desirable to minimize the volume of the LLM by use of available LSI

technology wherever practical. To this end, speed and performance were

sacrificed, within the established design goals, to allow for a minimum

parts count (and hence volume) configuration.

4.4 LLM ORGANIZATION

4. 4. 1 Arithmetic Loop

The DAIS instruction set is organized around a general register machine

utilizing a group of 16 general registers. This, along with the desired speed

goals dictated the choice of the AM-2901 14-processor as the building block

of the LLM arithmetic unit. Figure 74 illustrates the resulting architec-

ture for the LLML

The LLM is organized around a single 16-bit data bus (MDTA) within

the CPU. Memory, I/O and CPU data are all transferred over this bus.

Two groups of 8-bit wide 2901's are used to process data and form the

register file for the LLM. Registers, MORI and MOR2 are memory

operand registers used as intermediate buffer registers. SCT is a 5-bit

136

I----------

LX R

4J

04

J~ 4J

cc~

[X4

137

counter register used as a sequence counter for multiple clock micro-

program routines.

4. 4. 2 Control Structure

The control portion of the LLM is comprised of a 51Z-word by 64-bit

microprogram store contained in Read Only Memories (ROM's). A micro-

program sequencer (such as the AM-2911) is used to control the sequencing

of the microprogram instructions for CPU algorithm execution. Micro-

program address sources may be selected from either a microprogram

jump field (JADD ROM) or from a set of ROM's to allow efficient micro-

program branch capability. Also, system flags may be individually tested

by the microprogram sequencer to facilitate conditional microprogram

branching.

Each microprogram ROM output is followed by a holding register to

allow microinstruction fetches to be overlapped with microinstruction

execution.

Discrete registers are provided for the formation of the effective add-

ress (EAR) for memory address instructions and for the instruction

counter (IC). Each of these registers and the MDTA bus are connected to

the I-BUS Control Unit (ICU) which provides the interface to the I-BUS.

The memories and I/O are then interfaced to the I-BUS.

4. 4. 3 1/0 Organization

The I/O and memory system is interfaced with the I-BUS to provide a

standard interface for all I/O elements. Therefore, a standard set of

I,'O modules may be developed and a LLM application configuration by

simply "plugging in" the appropriate modules. An 1,/0 module may be as

simple as a discrete interface or as complex as a 1553-A processor

(figure 75).

The memory system is interfaced similarly to an I/O device, through

the MIU (Memory Interface Unit). Any memory technology (IC, Core,

138

EXPANDABLE
[" 1/0 SYSTEM

M

SI SYSTE•M

DATA
,-Bss .. . , ADOR

77-0819-VA-69

Figure 75. LLM 1/O Organization

CCD, etc.) may be interfaced with the MIU since all memory timing is

performed in a "handshake" fashion.

The interrupt system is interfaced direc1 .y with the I-BUS and provides

s ixteen levels of priority interrupts to the CPU.

4. 4. 4 Machine Operation and Timing

In order to more fully understand the operation of the LLM, five

microprogram control routines will be described in detail. The routines

are,

a. Instruction Fetch

b. Fixed point ADD (Register/Memory)

c. SHIFT Instructions

d. Floating point ADD

e. Multiply instruction

A microprogram flow chart is included for each of these instructions

to facilitate the explanation.

139

A, Lnstruc'ion Fetch

I)Qll lthe Instruction Fetch cycle, the CPU reads the current 2-word

instruction to be executed and saves it in IR, MORI and MOR2. Referring

to igurt. 7h, each step of the microprogram execution for the Instruction

,etch cycle is indicated as a reparate block. Figure 77 provides the

daieAed timing for the Instruction Fetch cycle.

The tnistruction Fetch begins by passing the IC to the ICU and requesting

a metrnory read operation from the memory system (IF1 of Figure 76). The

CPU Control then increments the IC and proceeds to Step IFZ to await the

cotupletion of the memory cycle. When the memory data is ready, the CPU

proceeds to IF3 and loads the fetched memory word (most significant

16 bits of the 32-bit instruction word) into IR and MOR2. A new memory

cycle is then initiated to read the second half of the instruction. Once

again, the IC is incremented and the CPU waits for the completion of the

rnemory cycle. When the memory cycle has ended, the CPU proceeds to

step IF5 and loads register MOVl with the second half of the instruction.

The instruction fetch cycle is then completed with the instruction

saved in MORI and MOR2. The CPU next proceeds to execute the ins-

truction before returning to the Instruction Fetch cycle. Figure 77

illustrates the detailed timing for this sequence of events.

b. Fixed-Point ADD

The Fixed-Point ADD performs a parallel 16-bit two's complement ADD

of an accumulator register (RA) and a memory operand. The sum is placed

in RA and the appropriate arithmtetic flags are sampled.

Referring to figures 78 and 79, the CPU begins execution of the ADD

instruction by calling a micro-program subroutine to compute the effective

address of the memory operand. The subroutine returns the calculated

address in the EAR register.

140

INTFETCH

IF1

IC - .- ADOR
IC+ I1-.

MEMORY READ

IF2
MEMORY. RE ADY !, O

IC + 1-- IC
MEMO RY EAD

MEMORY READY

•YES IF

fF5

(7MD TA - MOR1

EXIT

77-0819-VA-70

Figure 76. Instruction Fetch Flow

141

S~OV I W

Un.

UOJ jvv&U

U ~Qd142

C- ... 1-•
AO()

FAR C '..1AR

NMUNIORY IUbAO

CMEIOMQR' RE~ADYJm

77-0810-VA-72

Figure 78. Fixed-Paint ADD Flow

143

I I
)I

III

144

LDuring #top ADL)I, the effact•ve address is passed to the memory and a

rnamory road ix ititated, The CPU waits for the memory to complete its

read cycle in ADD2, When completed. the CPU loads the memory data

into MO112 at Step ADD3.

The CPU now has both operands for the fixed-point ADD and completes

the ADD operation during Step ADD4. During ADD4, MOR2 is enabled

onto the MDTA bus and passed to the 2901 A-processor. The CPU control

ROM'a Instruct the microprocessor to perform a 16-bit fixed-point ADD

to RA and return the result to RA. Simultaneously with RA being loaded

with the awn, the three arithmetic flags (Sign, Overflow, Zero) are

updated to reflect the results of the arithmetic operation.

The CPU has now completed the ADD instruction and returns to initiate

the next Instruction fetch cycle.

c, SMIFT Instruction

Figures 80 and 81 illustrate the execution of the SHIFT instruction.

During SHI register RA is repeatedly shifted while SCT (which contains the

shift count) is decremented. The microprogram sequencer continrially

tests the value of SCT and causes microprogram control to be passed to

step SH2 when Scr Is nero. During SH2, the arithmetic flags are sampled

and finally the next instruction fetch cycle is begun.

d. Floating Point ADD

Thi floating point instruction performs a 32-bit floating-point ADD (8-

bit exponent and 24-bit fractional mantissa) between the double register

pair (A , RA+l) and the double-memory word designated as the operand.

The result is returned to (RA# R A+) replacing one ýof the original oper-

ands. Both operands are assumed to be normalized floating point numbers

and their sum is normalized prior to placement in (RRA' RA+ I).

For purposes of discussion let RE represent the exponent portion of the

register operand while 1AME represents the exponent portion of the memory

operand.

145

t r, - -,•-. t. .

SH1

Ra (SHIFT)---•R

SCT = O? ON

YES

SAMPLE FLAGS

EXIT

77-0819-VA-73

Figure 80. Shift Instruction Flow

Referring to figure 82, the algorithm begins with an effective address

calculation for the memory operand. The double-word memory operand

is taen read from memory and the most significant half saved in MOR2

while the least significant half is saved in MORI. The floating-point

algorithm now being with microprogram step FPAI.

During FPA1, RE (exponent field of the register operand) is transferred

into EREG of !he Exponent Arithmetic Unit (see figure 74). The next

microprogram step performs an "excess 128" subtract in the exponent

arithmetic unit forming (RE - ME). This represents the exponent diffe-

rence (AEXP) of the two numbers and will be used to indicate which operand

needs to be adjusted (shifted right).

The operand adjustment algorithm begins at FPA3 where the sign of

AEXP is tested to determine which operand is to be adjusted. Assuming

that REŽ MEN the control proceeds to FPA4.

146

- ,•. ' € r -• --. d- I

r-4

00

147

F.P ADD
F PA7

SIGN
EXTEND

[l EF F ~o~pui• R ES IIE.XPONENT FIELD OFe

EFFECTIVE ADDRESS Me______
COMPUTE4

pSHIFT Me

,A EXP PLACES
OPERANuDTFETCH TO RIGHT

ROTINE 7 MOR2, MORI (Me, Mm) I FPA8

' A Ra. Ra + 1 =(Re, Rm) Re -. EREG

SFPA2

FP2 ..SIGN
EXTEND Re

E(Re Me) EREG 1

AE 1 P FPAI0

FPA3 (a, Ra +1) - (MOR2,
.... . MO R1) -+ Ra, Ra 1

.1 EXP 0 NO

(Ree< Me)
YES

(Re ;[NVe) NORMALIZE

EXI

Figur(Ra. Ra + 1)
EOF =1,

FPA6 •1' FPA11

.-EXP 124 EREG Re
,FPA5 I

- Rs, Ra 1

- -- 77.0819.VA.75

Figure 82. Floating -Point ADD

148

If the exponent differencing did not overflow then the microprogram

proceeds to FPA6 where it tests to see Lf the memory operand may be

successfully scaled. If the AEXP value in EREu is greater than or equal

to 24, then no further calculations need be performed and the register

operand will be the answer. However, if the memory operand can be

successfully scaled, the microprogram proceeds to FPA7 where PLA#I is

used to sign extend the mantissa through the exponent field of the memory

operand in MOR2. Next, the register pair (MOR2, MORI) is shifted right

AEXP places in a microprogram subroutine. The memory operand is now

appropriately scaled for mantissa addition.

FPA8 loads EREG, with the answer exponent (R E) and proceeds to FPA9

where the exponent field of (IRA, RA + l) is sign extended in preparation for

the mantissa add operation of step FPAIO. After the mantissas are added,

microprogram control is passed to a normalize subroutine where the

answer mantissa is shifted left until it is appropriately normalized. Of

course, with each shift left required for normalization, the answer expon-

ent in EREG is decremented. Upon completion of the normalization

subroutine, the answer exponent in EREG is assembled into RE a.nd the

instruction is complete.

e. Multiply

The fixed-point multiply is performed entirely within the 2901 micro-

processor using a one bit at a time repeated add algorithm.

Referring to figure 83, the multiply algorithm begins with an effective

address computation followed by an operand fetch for the multiplicand. The

multiplication "setup" begins with step MPYI by transferring the multiplier

to the Q register within the 2901 microprocessor. MPYZ loads the constant

150 from PLA#I (see figure 74) into SCT and shifts Q one place right

entering the least significant multiplier bit into the S flip flop. Next, R A is

cldared during MPY2 to act as the partial sum register for the multiply.

149

M:PY

EFFECTIVE ADDRESS
COMP TE

OPERAND FETCH

FRa-.0

SCT-O SNO

YES MPY4

(Ra*+MOR2)(SI--w Ra

Ra (S R)-* Ra

YSMPY5

.10

L-- -.-- -- _ -

The repeated sums are performed during step MPY4 using the S flip-

flop to control the add operation within the 2901. As each sum is formed

the result and multiplier are shifted one place right to form the next part-

ial sum. The process now continues until 15 partial sums are formed at

which time control is transferred to MPY5.

In accordance with the rules for performing two's complement multipli-

cation, MPY5 tests the sign of the multiplier to determine if a correction

cycle for the partial sum is necessary. If required, MPY6 performs the

required subtraction. MPY7 adjusts the partial sum for integer repre-

sentation while MPY8 moves the least significant half of the product into

RA + I to complete the instruction.

4. 4. 5 Execution Times

Instruction execution times for the LLM are a function of two criteria.

First, the memory speed has a direct impact upon both instruction fetch

times and operand fetch times. Secondly, the internal circuit delays of

the LLM dictate a maximum frequency for the CPU clock. Using a one

microsecond core memory for instructions and data with a four megahertz

system clock, the following typical instruction times are achievable:

LOAD 3. 0 usec

ADD 3.0 ; sec

STORE 3. 0 psec

SHIFT 2. 25 + (N-1) 0. 25jsec

MPY 8. 5 usec

FP ADD (average) 10. 5 vsec

4. 5 PHYSICAL DESCRIPTION

Using the machine organization shown in figure 74, an estimate of

parts was made to "size" the LLM.. Once a parts estimate was obtained,

an estimate of power consumptlon.was then made. For purposes of esti-

mation, the memory parts and power were omitted while the i/O

configuration was assumed to be a 16-level priority interrupt system.

151

Using presently available parts, table 9 reflects the parts estimates

for the LLM. Accordingly, the LLM could be fabricated from approxi-

mately 120 currently available bipolar devices. Using packaging techniques

similar to the present DAIS computer, the LLMl would occupy three

printed wiring boards and dissipate approximately 45 watts.

TABLE 9

LLM PARTS AND POWER ESTIMATES

ELEMENT LSI MS1 SSI POWER (WATTS)

CPU 19 32 10 30

ICU 9 16 15 10

I/0 2 4 15 5

TOTAL 30 52 40 45

77.0819.VA.77

15Z
*U.s.oovernment Printing Officec 1918 - 757-080/617

